NANYANG TECHNOLOGICAL UNIVERSITY SPMS/DIVISION OF MATHEMATICAL SCIENCES

Your tutor will aim to discuss: Problem 1, 2, 5, 6, 9, and 10

Problem 1

(a) Suppose $g(x)$ is an even function and we set $h=f \circ g$, where f is some other function. Is $h(x)$ even?
(b) Suppose $g(x)$ is an odd function and we set $h=f \circ g$, where f is some other function. Is $h(x)$ always odd?
(c) Suppose $g(x)$ is an odd function and we set $h=f \circ g$, where f is odd. What about $h(x) ?$
(d) Suppose $g(x)$ is an odd function and we set $h=f \circ g$, where f is even. What about $h(x)$?

Problem 2 Let $f(x)=a x+b$ and $g(x)=c x+d$. What condition must be satisfied by the constants a, b, c, d in order that $(f \circ g)(x)=(g \circ f)(x)$ for every value of x ?

Problem 3 The point $P(1,1)$ lies on the the graph of the function $f(x)=\frac{3 x}{1+2 x}$.
(a) If Q is the point $\left(x, \frac{3 x}{1+2 x}\right)$, use your calculator to find the slope of the secant line $P Q$ for the values of x : (i) 0.5 ; (ii) 0.9 ; (iii) 0.99 ; (iv) 0.999 ; (v) 1.5 ; (vi) 1.1 ; (vii) 1.01; and (viii) 1.001.
(b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at $P(1,1)$.
(c) Using the slope from part (b), find an equation of the tangent line to the curve at $P(1,1)$.

Problem 4 The displacement of a particle moving back and forth along a straight line is given by the equation of motion $s=2 \sin \pi t+3 \cos \pi t$, where t is measured in seconds.
(a) Find the average velocity for during the time period : (i) $[1,2]$; (ii) $[1,1.1]$; (iii) [1, 1.01]; (iv) [1, 1.001].
(b) Estimate the instantaneous velocity of the particle when $t=1.0$.

Problem 5 Consider a function $h(x)$ with the graph as shown in Figure 1. State the value of the following quantity, if it exists. If it does not exist, explain why.

(a) $\lim _{x \rightarrow-3^{-}} h(x)$	(b) $\lim _{x \rightarrow-3^{+}} h(x)$	(c) $\lim _{x \rightarrow-3} h(x)$	(d) $h(-3)$
(e) $\lim _{x \rightarrow 0^{-}} h(x)$	(f) $\lim _{x \rightarrow 0^{+}} h(x)$	(g) $\lim _{x \rightarrow 0} h(x)$	(h) $h(0)$
(i) $\lim _{x \rightarrow 2} h(x)$	(j) $h(2)$	(k) $\lim _{x \rightarrow 5^{+}} h(x)$	(l) $\lim _{x \rightarrow 5^{-}} h(x)$

Figure 1. Graph of $h(x)$ in Problem 5

Problem 6 Give an example of a function f satisfying the following conditions:
$\lim _{x \rightarrow 0^{-}} f(x)=1, \lim _{x \rightarrow 0^{+}} f(x)=-1, \lim _{x \rightarrow 2^{-}} f(x)=0, \lim _{x \rightarrow 2^{+}} f(x)=1, f(2)=1$, and $f(0)$ is undefined.

Problem 7 Guess the value of the limit

$$
\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-2 x-3}
$$

by evaluating the function at the points

$$
x=3.5,3.1,3.05,3.01,3.005,2.5,2.9,2.95,2.99,2.995
$$

Problem 8

(a) Evaluate the function $f(x)=x^{2}-\left(2^{x} / 1000\right)$ for $x=1,0.8,0.6,0.4,0.2,0.1$, and 0.05 , and guess the value of

$$
\lim _{x \rightarrow 0}\left(x^{2}-\frac{2^{x}}{1000}\right)
$$

(b) Evaluate $f(x)$ for $x=0.04,0.02,0.01,0.005,0.003$, and 0.001 . Guess again.

Problem 9 Consider the function $f(x)=\tan \frac{\pi}{x}$.
(a) Show that $f(x)=0$ for $x=\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots$.
(b) Show that $f(x)=1$ for $x=\frac{4}{1}, \frac{4}{5}, \frac{4}{9}, \cdots, \frac{4}{4 n-3}, \cdots$.
(c) What can you conclude about $\lim _{x \rightarrow 0^{+}} \tan \frac{\pi}{x}$?

Problem 10

(a) Use numerical and graphical evidence to guess the value of the limit

$$
\lim _{x \rightarrow 4} \frac{x^{3}-64}{\sqrt{x}-2}
$$

(b) How close to 4 does x have to be to ensure that the function in part (a) is within a distance 2.0 of its limit?

