NANYANG TECHNOLOGICAL UNIVERSITY SPMS/DIVISION OF MATHEMATICAL SCIENCES

Your tutor will aim to discuss: Problem 1, 4, 5, 8, and 10

Problem 1 In this problem we will investigate the limit

$$
\lim _{x \rightarrow 1}(2 x+3)=5
$$

(a) Draw a graph of the function $f(x)=2 x+3$ with the point $(1,5)$ marked.
(b) Add the lines $y=5+\epsilon$ and $y=5-\epsilon$ to your graph, with $\epsilon=2$. Using your graph, find a $\delta>0$ such that $|f(x)-5|<\epsilon$ whenever $0<|x-1|<\delta$.
(c) Repeat for the case $\epsilon=1.5$.
(d) Repeat for the case $\epsilon=1.0$.
(e) Repeat for the case $\epsilon=0.5$.
(f) Express $|f(x)-5|$ in terms of $|x-1|$.
(g) Use part (f) to give a general formula for $\delta(\epsilon)$ as a function of ϵ such that for every possible $\epsilon>0,|f(x)-5|<\epsilon$ whenever $0<|x-1|<\delta(\epsilon)$.
(h) Now write down a formal proof that $\lim _{x \rightarrow 1}(2 x+3)=5$.

Problem 2 Use the ϵ, δ definition to prove that

$$
\lim _{x \rightarrow-2}\left(\frac{1}{2} x+3\right)=2
$$

Problem 3 Use the ϵ, δ definition to prove that

$$
\lim _{x \rightarrow 1} \frac{2+4 x}{3}=2
$$

Problem 4 Use the ϵ, δ definition to prove that

$$
\lim _{x \rightarrow a} x=a
$$

Problem 5 Use the ϵ, δ definition to prove that

$$
\lim _{x \rightarrow a} c=c .
$$

Problem 6 Use the ϵ, δ definition to prove that

$$
\lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x-4}=6 .
$$

Problem 7 Use the ϵ, δ definition to prove that

$$
\lim _{x \rightarrow 2}\left(x^{2}+2 x-7\right)=1
$$

Problem 8 Consider the Heaviside function

$$
H(t)= \begin{cases}1, & \text { if } t \geq 0 \\ 0, & \text { if } t<0\end{cases}
$$

Use the precise definition of a limit to prove that $\lim _{t \rightarrow 0} H(t)$ does not exist.
Problem 9 Let $a>0$ and n be a positive integer. Prove that

$$
\lim _{x \rightarrow a} x^{\frac{1}{n}}=a^{\frac{1}{n}}
$$

Problem 10 Use the ϵ, δ definition to prove that

$$
\lim _{x \rightarrow 0}|x|=0
$$

