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Lecture No. 1

Functions

1.1 What is a function?
Definition 1. Function. A function f is a rule that assigns to each element
x in a set D exactly one element, called f(x), in a set E. The set D is caled
the domain of the funciton. The range of f is the set of all possible values
of f(x) as x varies throughout the domain.

In other words, {x ∈ D|f(x) ∈ E}.

1.1.1 Ways to represent a function

There are many different ways of describing funcitons:

• verbally (by a description of words)

• numerically (by a table of values)

• visually (by using a graph)

• algebraically (by using an explicit formula)

1.1.2 Domain and Range

Domain is the x-span and range is the y-span. Find the domains of the
following functions:

Exercise 1.1.1.
f(x) = 1

x2 − 5x+ 6 .

Exercise 1.1.2.
g(x) = 1

1− cos2x
.

Exercise 1.1.3.
h(x) = 1

√
x− 1

−
√
1− x.

2
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Solution 1.1.1.

x2 − 5x+ 6 = (x− 3)(x− 2) ∴ {x ∈ R|x ̸= 3, 2}.

Solution 1.1.2.

cos2(x) ̸= 1 ∴ cos(x) ̸= 1,−1 ∴ {x ∈ R|x ̸= nπ, n ∈ N}.

Solution 1.1.3.

x > 1, x ⩽ 1 ∴ No solutions for x.

1.1.3 Vertical line rule
A curve in the xy-plane is the graph of a function of x if and only if no vertical
line intersects the curve more than once.
Example 1.1.1. The parabola x = y2 − 2 is not the graph of a function of x
because there are vertical lines that intersect the parabola twice.

1.1.4 Piecewise defined functions
Definition 2. Piecewise defined functions. Piecewise defined functions are
functions defined by different formulas in different parts of their domains.

Example 1.1.2. The following is a piecewise defined function:

f(x) =
{

1− x, x ⩽ −1
x2, x > −1

1.1.5 Even & Odd Functions
Even and odd functions are used to define whether a function is symmetrical or
perfectly asymmetrical about the line x = 0.

Definition 3. Even function. An even function is a function that satisfies
the following:

f(−x) = f(x).

for all x in its domain. Even functions show symmetry about the line x = 0.

Example 1.1.3. The function cos(x) is symmetric about the line x = 0 and
cos(−x) = cos(x) is true, therefore, cos(x) is an even function.

Definition 4. Odd function. An odd function is a function that satisfies
the following:

f(−x) = −f(x).

for all x in its domain. Odd functions show perfect asymmetry about the
line x = 0.

Example 1.1.4. The function sin(x) is perfectly asymmetric about the line
x = 0 and sin(−x) = −sin(x) is true, therefore, sin(x) is an odd function.
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Determine whether each of the following functions is even, odd, or neither
even nor odd:
Exercise 1.1.4.

f(x) = x5 + x.

Exercise 1.1.5.
g(x) = 1− x4.

Exercise 1.1.6.
h(x) = 2x− x2.

Solution 1.1.4.

f(−x) = (−x)5 + (−x)
= −x5 − x

= −(x5 + x)
= −f(x).

Therefore, f is an odd function.

Solution 1.1.5.

g(−x) = 1− (−x)4

= 1− x4

= g(x).

Therefore, g is an even function.

Solution 1.1.6.

h(−x) = 2(−x)− (−x)2

= −2x− x2

Since h(−x) ̸= h(x) and h(−x) ̸= −h(x), we conclude that h is neither even nor
odd.

Proof 1. Prove that a function f is the sum of an even and an odd function
in the range (−a, a).

f(x) = e(x) + o(x)
f(−x) = e(−x) + o(−x)
f(−x) = e(x) + o(−x)
f(−x) = e(x)− o(x)
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1.1.6 Increasing & Decreasing Functions

Definition 5. Increasing Function. A function f is called increasing on an
interval I if:

f(x1) < f(x2) whenever x1 < x2 in I.

The inequality f(x1) < f(x2) must be satisfied for every pair of numbers
x1 and x2 in I with x1 < x2.

The opposite is true for decreasing functions.

1.2 A catalog of essential functions

Definition 6. Polynomial. A function P is called a polynomial if it is of
the form:

P (x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0.

where n is a non-negative integer and the numbers a0, a1, a2, . . . , an are
constants called the coefficients of the polynomial. The domain of any
polynomial is R = (−∞,∞). If the leading coefficient an ̸= 0, then the
degree of the polynomial is n.

Definition 7. Power Functions. A function of the form:

f(x) = xa.

where a is a constant, is called a power function.

Definition 8. Rational Functions. A rational function f is a ratio of two
polynomials:

f(x) = P (x)
Q(x) .

where P and Q are polynomials. The domain consists of all values of x such
that Q(x) ̸= 0.

Definition 9. Algebraic functions. A function is called an algebraic function
if it can be constructed using algebraic operations starting with polynomials.

Definition 10. Exponential Functions. The exponential functions are the
functions of the form f(x) = bx, where the base b is a positive constant.
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1.3 Transformation of Functions
Suppose c > 0. To obtain the graph of:

• y = f(x) + c, shift the graph of y = f(x) a distance c units upward.

• y = f(x)− c, shift the graph of y = f(x) a distance c units downward.

• y = f(x− c), shift the graph of y = f(x) a distance c units to the right.

• y = f(x+ c), shift the graph of y = f(x) a distance c units to the left.

• y = cf(x), stretch the graph of y = f(x) vertically by a factor of c.

• y = 1
cf(x), shrink the graph of y = f(x) vertically by a factor of c.

• y = f(cx), shrink the graph of y = f(x) horizontally by a factor of c.

• y = f(xc ), stretch the graph of y = f(x) horizontally by a factor of c.

• y = −f(x), reflect the graph of y = f(x) about the x-axis.

• y = f(−x), reflect the graph of y = f(x) about the y-axis.

1.4 Combinations of Functions
Definition 11. Sum and difference functions. The sum and difference
functions are defined by:

(f + g)(x) = f(x) + g(x) (f − g)(x) = f(x)− g(x).

If the domain of f is A and the domain of g is B, then the domain of f ± g
is the intersection A ∩B because both f(x) an g(x) have to be defined.

Definition 12. Product and quotient functions. The product and quotient
functions are defined by:

(fg)(x) = f(x)g(x)
(
f

g

)
(x) = f(x)

g(x) .

The domain of fg is A ∩B. Because we cannot divide by 0, the domain of
f
g is therefore {x ∈ A ∩B|g(x) ̸= 0}.

Definition 13. Composite functions. Given two functions f and g, the
composite function f ◦ g (also called the composition of f and g) is defined
by:

(f ◦ g)(x) = f(g(x)).

The domain of f ◦ g is the set of all x in the domain of g such that g(x) is
in the domain of f :

Dom(f ◦ g) = {x ∈ Dom(g)|g(x) ∈ Dom(f)}.
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Limits

2.1 Intuition
Here is how we denote a limit:

lim
x→a

f(x).

read as the limit of the function f(x) as x approaches a. Think about the
function:

f(x) = sin(x)
x

.

Focus on how it looks close to the point x = 0. Even though f(x) = sin(x)
x has no

value defined at the point x = 0, we can still look at the values f takes at points
cles to x = 0, and see if those values are approaching some fixed value as x gets
closer and closer to 0. The limit of a function f(x) at a point a is a number L
which the values of the function get closer and closer to as the variable x gets
closer and closer to a.

We know that:
lim
x→0

f(x) = lim
x→0

sin(x)
x

= 1.

Definition 14. Tangent line to a graph. Let D ⊂ R and let f : D → R be
a function. Then we define the tangent line to the graph of f(x) at the
point x0 to be the line going through the point (x0, f(x0)) with gradient:

lim
x→x0

f(x)− f(x0)
x− x0

.

if the limit exists. If this limit does not exist then we say that the graph
does not have a tangent at that point.

Example 2.1.1. Suppose that a ball is dropped from a tower 450m above the
ground. Find the velocity of the ball after 5 seconds.
Solution 2.1.1. We are dealing with a single instant of time (t = 5), so no time
interval is involved. We can approximate the desired quantity by computing the

7
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average velocity over the brief time interval τ seconds starting at time t = 5:

average velocity = change in position
time elapsed

= s(5 + τ)− s(5)
τ

= 4.9(5 + τ)− 4.9× 52
τ

= 49 + 4.9τ

As the time interval τ gets smaller and smaller, this quantity will be a better
approximation fo the instantaneous velocity at time τ . The instantaneous velocity
after 5 seconds is v = 49m/s.

2.2 Limit Laws
We use theorems called limit laws to build up more complicated limits from
simpler pieces.

Theorem 1. Sum Law. Let f and g be functions and let a ∈ R. If the
limits:

lim
x→a

f(x) and lim
x→a

g(x).

exist, then limx→a(f(x) + g(x)) exists and is:

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x).

The limit of a sum of functions is the sum of the limits of those functions.

Theorem 2. Product Law. Let f and g be functions and let a ∈ R. If the
limits:

lim
x→a

f(x) and lim
x→a

g(x).

exist, then
lim
x→a

f(x)g(x).

exists and
lim
x→a

f(x)g(x) = lim
x→a

f(x) lim
x→a

g(x).

The limit of a product of functions is the product of the limits of those
functions.
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Theorem 3. Quotient Law. Let f and g be functions and let a ∈ R. If the
limits:

lim
x→a

f(x) and lim
x→a

g(x).

exist and
lim
x→a

g(x) ̸= 0.

then
lim
x→a

f(x)
g(x) .

exists and
lim
x→a

f(x)
g(x) = limx→a f(x)

limx→a g(x)
.

The limit of a quotient of functions is the quotient of the limits of those
functions.

There are also two simple functions whose limits we can assume.

Theorem 4. Limits of simple functions.
Let a, c ∈ R, then:

lim
x→a

c = c

lim
x→a

x = a

Theorem 5. Constant Multiple Law. Let f be a function, and let a ∈ R.
Suppose that c is a constant. If the limit:

lim
x→a

f(x).

exist, then
lim
x→a

cf(x).

exists and
lim
x→a

cf(x) = c lim
x→a

f(x).

The limit of a constant times a function is the constant times the limit of
the function.

If we use the product law in theorem 2 repeatedly with g(x) = f(x), we
obtain the following power law:
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Theorem 6. Power Law. Let f be a function and let a ∈ R. Suppose that
n is a positive integer. If the limit:

lim
x→a

f(x).

exists, then
lim
x→a

[f(x)]n.

exists, and
lim
x→a

[f(x)]n =
[
lim
x→a

f(x)
]n

.

And lastly,

Theorem 7. Root Law. Let f be a function and let a ∈ R. Suppose that
n is a positive integer. If the limit:

lim
x→a

f(x).

exists, then
lim
x→a

n
√

f(x).

exists, and
lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x).

If n is even, we assume that limx→a f(x) > 0.

Example 2.2.1. Does the following limit exist, and if it does, evaluate it:

lim
x→3

(x2 − 9).

We see that:

lim
x→3

(x2 − 9) = lim
x→3

x2 + lim
x→3

(−9)

= lim
x→3

x · lim
x→3

x+ lim
x→3

(−9)

= 3× 3 + (−9)
= 0.

Therefore, the limit exists and is equal to 0.

Theorem 8. Direct Substitution Property. If f is a polynomial or a rational
function and a is in the domain of f , then:

lim
x→a

= f(a).

Functions with this property are called continuous.

Example 2.2.2. Evaluate the limit:

lim
x→1

x2 − 1
x− 1 .
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Note that limx→1(x − 1) = 0. This means we cannot use the quotient law in
theorem 3, but must take an alternative approach:

lim
x→1

x2 − 1
x− 1 = lim

x→1

(x− 1)(x+ 1)
x− 1

= lim
x→1

(x+ 1)

= 1 + 1
= 2.

This solution implicitly uses a very simple and important fact known as the
replacement law.

Theorem 9. Replacement Law. Let f and g be functions and let a ∈ R.
Assume that f(x) = g(x) whenever x ̸= a. Then either both f and g have
limits at a and:

lim
x→a

f(x) = lim
x→a

g(x).

or, neither limit exists.

Example 2.2.3. Evaluate the limit:

lim
t→0

√
t2 + 9− 3

t2
.

Unable to apply quotient law in theorem 3, since limit of the denominator is 0.
We can rationalise the numerator (called multiplying by the conjugate):

lim
t→0

√
t2 + 9− 3

t2
= lim

t→0

√
t2 + 9− 3

t2
·
√
t2 + 9 + 3

√
t2 + 9 + 3

= lim
t→0

(t2 + 9)− 9
t2
(√

t2 + 9 + 3
)

= lim
t→0

t2

t2
(√

t2 + 9 + 3
)

Using the quotient law in theorem 3:

= limt→0 1
limt→0

(√
t2 + 9 + 3

)
Using the sum law in theorem 1:

= 1
limt→0

√
t2 + 9 + limt→0 3

Using the root law in theorem 7:

= 1√
limt→0(t2 + 9) + limt→0 3

= 1
6

Some limits are best calculated by first finding the left and right hand limits.
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Theorem 10. This statement holds true:

lim
x→a

f(x) = L.

if and only if:
lim

x→a−
f(x) = L = lim

x→a+
f(x).

A two sided limit exists if and only if both of the one-sided limits exist and
are equal.

Example 2.2.4. Prove that the following limit does not exist:

lim
x→0

|x|
x
.

Using the facts that |x| = x when x > 0 and |x| = −x when x < 0, approaching
from the right:

lim
x→0+

|x|
x

= lim
x→0+

x

x

= lim
x→0+

1

= 1

Approaching from the left:

lim
x→0−

|x|
x

= lim
x→0−

−x

x

= lim
x→0−

(−1)

= −1

Since the right and left hand limits are different, if follows from theorem 10 that
limx→0

|x|
x does not exist.

The next two theorems give two additional properties of limits.

Theorem 11. Let f and g be functions, and let a ∈ R. Assume that:

lim
x→a

f(x) and lim
x→a

g(x) exist.

And that f(x) ⩽ g(x) for all x in an open interval of the form (a− δ, a+ δ)
for some positive δ ∈ R (except possibly at a itself). Then:

lim
x→a

f(x) ⩽ lim
x→a

g(x).
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2.3 The Squeeze Theorem

Theorem 12. Squeeze Theorem. Let f , g, and h be functions, and let
a ∈ R. Assume that:

lim
x→a

f(x) exists.

lim
x→a

h(x) exists.

lim
x→a

f(x) = lim
x→a

h(x) is true.

And that f(x) ⩽ g(x) ⩽ h(x) for all x in an open interval of the form
(a− δ, a+ δ) for some positive δ ∈ R (except possibly at a itself).

Then:
lim
x→a

g(x) exists.

And:
lim
x→a

g(x) = lim
x→a

f(x) = lim
x→a

h(x) is true.

Example 2.3.1. Show that:

lim
x→0

x2 sin 1
x
= 0.

Solution 2.3.1. Note that we cannot use:

lim
x→0

x2 sin 1
x
= lim

x→0
x2 · lim

x→0
sin 1

x
.

because limx→0 sin 1
x does not exist. Instead, we apply the squeeze theorem.

Note that the function in question is bounded by the sin 1
x function as such:

−1 ⩽ sin 1
x
⩽ 1.

The inequality remains true when multiplied by a positive number. Since we
know that all values of x2 are positive, we can do the following:

−x2 ⩽ x2 sin 1
x
⩽ x2.

And we know that:

lim
x→0

x2 = 0 and lim
x→0

−x2 = 0.

Therefore using the squeeze theorem we can conclude that:

lim
x→0

x2 sin 1
x
= 0.

2.4 The Precise Definition of a Limit
Consider the function:

f(x) =
{
2x− 1 if x ̸= 3
6 if x = 3

.

It is clear that limx→3 f(x) = 5.
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Now let us ask:

How close to 3 does x have to be so that f(x) differs from 5 by less
than 0.1?

The distance from x to 3 is |x− 3| and the distance from f(x) to 5 is |f(x)− 5|
so we need a number δ such that:

|f(x)− 5| < 0.1 if |x− 3| < δ but x ̸= 3.

Note that if |x− 3| > 0 then x ̸= 3 so:

|f(x)− 5| < 0.1 if 0 < |x− 3| < δ.

Notice that if 0 < |x− 3| < (0.1)/2 = 0.05, then:

|f(x)− 5| = |(2x− 1)− 5|
= |2x− 6|
= 2|x− 3| < 2(0.05) = 0.1

And therefore
|f(x)− 5| < 0.1 if 0 < |x− 3| < 0.05.

Note that we can generalise to:

|f(x)− 5| < ε if 0 < |x− 3| < ε

2 .

Which can be rewritten to:

if 3− δ < x < 3 + δ then 5− ε < f(x) < 5 + ε.

Which is a precise way of saying that f(x) is close to 5 when x is close to 3,
because we can make f(x) within an arbitrary distance ε from 5 by restricting
the values of x to be within a distance ε

2 from 3.

Definition 15. Precise definition of a Limit. Let f be a function defined
on some open interval that contains the number a, except possibly at a
itself. Then we say that the limit of f(x) as x approaches a is L, and we
write:

lim
x→a

f(x) = L.

if for every number ε > 0 there is a number δ > 0 such that:

if 0 < |x− a| < δ then |f(x)− L| < ε.

or in clearer terms:

if a− δ < x < a+ δ then L− ε < f(x) < L+ ε.

Example 2.4.1. Prove that:

lim
x→3

(4x− 5) = 7.
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Step 1: Preliminary analysis of the problem (guessing a value for δ). Let ε be a
given positive number. We want to find a number δ such that:

if 0 < |x− 3| < δ then |(4x− 5)− 7| < ε.

But we can see that:

|(4x− 5)− 7| = |4x− 12|
= |4(x− 3)|
= 4|x− 3|

Therefore we want a δ such that:

if 0 < |x− 3| < δ then 4|x− 3| < ε.

Which therefore means that:

if 0 < |x− 3| < δ then |x− 3| < ε

4 .

Which suggests that we should choose δ = ε
4 .

Step 2: Proof. Given ε > 0, choose δ = ε
4 . If 0 < |x− 3| < δ, then:

|(4x− 5)− 7| = |4x− 12|
= 4|x− 3| < 4δ

4δ = 4
(ε
4
)

= ε.

Thus:
if 0 < |x− 3| < δ then |(4x− 5)− 7| < ε.

Therefore, by the definition of the limit:

lim
x→3

(4x− 5) = 7.

2.4.1 One Sided Limits
The intuitive definitions of one-sided limits can be precisely formulated as follows:

Definition 16. Left-Hand Limit. The following equation holds true:

lim
x→a−

f(x) = L.

if for every number ε > 0 there is a number δ > 0 such that:

if a− δ < x < a then |f(x)− L| < ε.
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Definition 17. Right-Hand Limit. The following equation holds true:

lim
x→a+

f(x) = L.

if for every number ε > 0 there is a number δ > 0 such that:

if a < x < a+ δ then |f(x)− L| < ε.

Example 2.4.2. Use the right hand limit definition to prove that limx→0+
√
x =

0 :
First, guess a value for δ. Let ε be a given positive number. Here a = 0 and

L = 0, so we want to find a number δ such that:

if 0 < x < δ then |
√
x− 0| < ε.

or:
if 0 < x < δ then

√
x < ε.

If we square both sides of the inequality
√
x < ε, we get:

if 0 < x < δ then x < ε2.

Suggesting that we should choose δ = ε2. Now we need to show that this δ
works.

Given that ε > 0, let δ = ε2. If 0 < x < δ, then:
√
x <

√
δ =

√
ε2 = ε.

so
|
√
x− 0| < ε.

According to the definition of the right hand limit, this shows that:

lim
x→0+

√
x = 0.

2.4.2 Infinite Limits
Infinite limits can also be defined in a precise way.

Definition 18. Infinite Limit. Let f be a function defined on some open
interval that contains the number a, excepts possibly at a itself. Then:

lim
x→a

f(x) = ∞.

means that for every positive number M there is a positive number δ such
that:

if 0 < |x− a| < δ then f(x) > M.

Example 2.4.3. Use the definition of the infinite limit to prove that limx→0
1
x2 =

∞.
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First, let M be a given positive number. We want to find a number δ such
that:

if 0 < |x− 0| < δ then 1
x2 > M.

But:
1
x2 > M ⇐⇒ x2 <

1
M

⇐⇒
√
x2 <

√
1
M

⇐⇒ |x| < 1
√
M

So if we choose δ = 1√
M

and 0 < |x| < δ = 1√
M
, then 1

x2 > M . This shows that
1
x2 → ∞ as x → ∞.

Similarly, the following is a precise definition of the negative infinite limit.

Definition 19. Let f be a function defined on some open interval that
contains the number a, except possible at a itself. Then:

lim
x→a

f(x) = −∞.

means that for every negative number N there is a positive number δ such
that:

if 0 < |x− a| < δ then f(x) < N.



Lecture No. 3

Continuity

3.1 Precise Definitions
Definition 20. Continuous. A function f is continuous at a number a if:

lim
x→a

f(x) = f(a).

The definition implicitly requires three things if f is continuous at a :

1. f(a) is defined (that is, a is in the domain of f).

2. limx→a f(x) exists.

3. limx→a f(x) = f(a)

Definition 21. One Sided Continuity. A function f is continuous from the
right at a number a if:

lim
x→a+

f(x) = f(a).

and f is continuous from the left at a if:

lim
x→a−

f(x) = f(a).

Definition 22. Continuous on an Interval. A function f is continuous on
an interval if it is continuous at every number in the interval.

Example 3.1.1. Show that the function f(x) = 1−
√
1− x2 is continuous on

the interval [−1, 1]

18
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Solution 3.1.1. If −1 < a < 1, then using the limit laws, we have:

lim
x→a

f(x) = lim
x→a

(1−
√
1− x2)

= 1− lim
x→a

√
1− x2

= 1−
√

lim
x→a

(1− x2)

= 1−
√
1− a2

= f(a)

Thus by the definition of continuity, f is continuous at a if −1 < a < 1. We can
also see that:

lim
x→1+

f(x) = 1 = f(−1) and lim
x→1−

f(x) = 1 = f(1).

so f is continuous from the right at -1 and continuous from the left at 1. Therefore
we can see that f is continuous on [−1, 1].

3.2 Composition of Continuous Functions
If f and g are continuous at a and if c is a constant, then the following functions
are also continuous at a :

f + g f − g cf

fg f
g if g(a) ̸= 0

It follows that if f and g are continuous on an interval, then so are the
functions stated above.

Theorem 13. Direct Substitution Property. Any polynomial is continuous
everywhere; that is, it is continuous on R = (−∞,∞). Any rational function
is continuous wherever it is defined; that is, it is continuous on its domain.

The following types of functions are continuous at every number in their
domains:

• Polynomials

• Rational Functions

• Root Functions

• Trigonometric Functions

Theorem 14. If f is continuous at b and limx→a g(x) = b, then:

lim
x→a

f(g(x)) = f(b).

In other words:
lim
x→a

f(g(x)) = f
(
lim
x→a

g(x)
)
.
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3.3 Root Law
Let g be a function and let a ∈ R. Suppose that n is a positive integer. If the
limit limx→a g(x) exists, then limx→a

n
√
g(x) exists and:

lim
x→a

n
√
g(x) = n

√
lim
x→a

g(x).

If n is even, we assume that limx→a g(x) > 0.

3.4 Intermediate Value Theorem
Theorem 15. Intermediate Value Theorem. If f is continuous on the
interval [a, b] and d is between f(a) and f(b), then there is a number c in
[a, b] such that f(c) = d.
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