
Calculus II

Philip Thomas K.

March 13, 2023



Contents

1 Sequences 4
1.1 Notation & Representations . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Missing start index . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Recursively defined sequences . . . . . . . . . . . . . . . . 5

1.2 Convergent Sequences & their Limits . . . . . . . . . . . . . . . . 5
1.2.1 Convergent & Divergent Sequences . . . . . . . . . . . . . 5
1.2.2 Formal Definition of the Limit of a Sequence . . . . . . . 5

1.3 Properties of Convergent Sequences . . . . . . . . . . . . . . . . . 8
1.3.1 Constant Sequences . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Uniqueness of the Limit . . . . . . . . . . . . . . . . . . . 8
1.3.3 Bounded Sequences . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Sum & Difference Laws . . . . . . . . . . . . . . . . . . . 10
1.3.5 Order Properties for Convergent Sequences . . . . . . . . 11

1.4 Divergent Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Divergence to ∞ . . . . . . . . . . . . . . . . . . . . . . . 13

2 Limit Evaluation 15
2.1 Properties of Limits . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Dividing by the highest power of n in the denominator . . 17
2.3.2 Multiplying by the conjugate . . . . . . . . . . . . . . . . 18

2.4 Squeeze Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Fitting with a Function . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Monotone Convergence Theorem . . . . . . . . . . . . . . . . . . 21

3 Series: A Special Sequence 23
3.1 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Telescoping Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Harmonic Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Test for Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



CONTENTS 2

4 Indefinite & Definite Integrals 30
4.1 Antiderivatives & Indefinite Integrals . . . . . . . . . . . . . . . . 30
4.2 Rules for Integration . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 The Definite Integral & Area Under a Curve . . . . . . . . . . . . 33
4.4 Riemann Sum using Equal-width Partition . . . . . . . . . . . . 34
4.5 Properties of Definite Integrals . . . . . . . . . . . . . . . . . . . 36

5 Fundamental Theorem of Calculus 37
5.1 The First Fundamental Theorem of Calculus . . . . . . . . . . . 37
5.2 The Second Fundamental Theorem of Calculus . . . . . . . . . . 40
5.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Substitution & Integration by Parts 42
6.1 The Substitution Rule . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 The LIPET Rule . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Reduction Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Trigonometric Functions 47
7.1 Intergrating sinm x cosn x . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Intergrating secm x tann x . . . . . . . . . . . . . . . . . . . . . . 48

8 Integrating Polynomial Fractions 51
8.1 Partial Fractions for Integration of Rational Functions . . . . . . 51

8.1.1 Linear Factors . . . . . . . . . . . . . . . . . . . . . . . . 51
8.1.2 Irreducible Quadratic Factors . . . . . . . . . . . . . . . . 53

8.2 Inverse Trigonometric Substitution . . . . . . . . . . . . . . . . . 55
8.2.1 Integrands Involving

√
a2 + x2 or a2 + x2 . . . . . . . . . 55

8.2.2 Integrands Involving
√
a2 − x2 or a2 − x2 . . . . . . . . . 56

8.2.3 Integrands Involving
√
x2 − a2 or x2 − a2 . . . . . . . . . 57

9 Applications of Integration 58
9.1 Area Under a Curve . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 Volume of Solid of Revolution . . . . . . . . . . . . . . . . . . . . 60

9.2.1 The Disc Method . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.2 The Cylindrical Shell Method . . . . . . . . . . . . . . . . 61

9.3 The Length of an Arc of a Curve . . . . . . . . . . . . . . . . . . 62
9.4 Area of Surface of Revolution . . . . . . . . . . . . . . . . . . . . 63

10 Improper Integrals 65
10.1 Unbounded Interval . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.2 Infinite Discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . 66

11 Midpoint Rule & Trapezoidal Rule 70
11.1 Midpoint Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.2 Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

12 Error Bounds 72



CONTENTS 3

13 Simpson’s Rule 74
13.1 General Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.2 Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

14 The Integral Test 77
14.1 Intuition Behind Integral Test . . . . . . . . . . . . . . . . . . . . 77
14.2 p-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

15 The Comparison Tests 81
15.1 The Series Comparison Test . . . . . . . . . . . . . . . . . . . . . 81
15.2 The Limit Comparison Test . . . . . . . . . . . . . . . . . . . . . 82

16 Absolute & Conditional Convergence 85
16.1 Absolute Convergence . . . . . . . . . . . . . . . . . . . . . . . . 85
16.2 Conditional Convergence . . . . . . . . . . . . . . . . . . . . . . . 87

17 The Ratio & Root Tests 89
17.1 The Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
17.2 The Root Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

18 Power Series 93
18.1 The Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
18.2 Radius of Convergence . . . . . . . . . . . . . . . . . . . . . . . . 94

19 Power Series Representations 96
19.1 Fitting to a Geometric Series . . . . . . . . . . . . . . . . . . . . 96
19.2 Integration & Differentiation of Power Series . . . . . . . . . . . 98

20 Taylor & Maclaurin Series 100
20.1 Taylor & Maclaurin Series . . . . . . . . . . . . . . . . . . . . . . 100
20.2 Remainder & Error Bounds of Power Series . . . . . . . . . . . . 101

20.2.1 Taylor’s Theorem & The Remainder Polynomial . . . . . 101
20.2.2 Error Bound for Taylor Series . . . . . . . . . . . . . . . . 103

21 The Binomial Series 106
21.1 Using the Binomial Theorem . . . . . . . . . . . . . . . . . . . . 106

22 Finding Limits using Power Series 109
22.1 Using known Power Series . . . . . . . . . . . . . . . . . . . . . . 109



Lecture No. 1

Sequences

1.1 Notation & Representations
1.1.1 Notation
The sequence:

{a1, a2, a3, . . . }.
is usually denoted by one of the following notations:

{an} {an}∞n=1 (an) (an)∞n=1.

Often times, the index of a sequence may start from an integer other than 0
or 1.
Note. A sequence of real numbers can be considered as a function from a
subset of N to R.
Example 1.1.1. Sequence defined by a formula for the n-th term:{

n

n+ 1

}∞

n=1
=⇒ an = n

n+ 1 .

Therefore the sequence’s listing is of the following form: 1
2︸︷︷︸

n=1

,
2
3︸︷︷︸

n=2

,
3
4︸︷︷︸

n=3

, . . . ,
n

n+ 1 , . . .

 .

1.1.2 Missing start index
If the starting index of a sequence is not stated, then it will be the smallest
integer that the formula defining an makes sense and is a real number.
Example 1.1.2. Determine the starting index for the sequence:

an =
√
n− 3.

The term an =
√
n− 3 does not make sense for n − 3 < 0. It is only a real

number when n− 3 ⩾ 0. Thus we have:{√
n− 3

}∞

n=3
.

4



LECTURE NO. 1. SEQUENCES 5

Example 1.1.3. Determine the starting index for the sequence:

bn = ln(n2 − 5).

The term is defined when n2 − 5 > 0, and therefore:

n >
√
5, n ∈ N =⇒ n ⩾ 3.

Thus we have: {
ln(n2 − 5)

}∞
n=3 .

1.1.3 Recursively defined sequences
The Fibonacci sequence is defined recursively by the following conditions:

f1 = 1, f2 = 1, fn = fn−1 + fn−3 (n ⩾ 3).

The formula for fn involves the preceding terms fn−1 and fn−2, making it
recursive.

1.2 Convergent Sequences & their Limits
1.2.1 Convergent & Divergent Sequences
The sequence: {

n

n+ 1

}
.

approaches the number 1 as n becomes larger. Therefore we say the sequence
converges to 1, and we write:

lim
n→∞

n

n+ 1 = 1.

The sequence {−1, 1,−1, 1, . . . } does not approach a number as n becomes larger.
Therefore we say the sequence diverges. The sequence:{

n3 + 1
2

}
.

becomes larger and larger uboundedly as n becomes larger. Therefore we say
the sequence diverges, and we write:

lim
n→∞

n3 + 1
2 = ∞.

1.2.2 Formal Definition of the Limit of a Sequence

Definition 1. A sequence {an} has the limit L and we write:

lim
n→∞

an = L or an → L as n → ∞.

if for every ϵ > 0 there is a corresponding integer N such that:

|an − L| < ϵ for every n > N.
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If such a real number L exists, we say that the sequence converges to L.
Otherwise, we say that the sequence diverges and is divergent. To prove that
the limit exists, we have to find (or show that it exists) a positive integer N such
that:

n > N =⇒ |an − L| < ϵ.

Example 1.2.1. Use the definition to prove that the sequence
{ 1

n

}
converges

to 0.

Proof. Let ϵ > 0 be an arbitrarily chosen positive number. Our aim is to find
an integer N such that for all n > N ,∣∣∣∣ 1n − 0

∣∣∣∣ < ϵ =⇒
∣∣∣∣ 1n
∣∣∣∣ < ϵ =⇒ 1

n
< ϵ.

Thus we have n > 1
ϵ . We choose N to be an integer such that N > 1

ϵ . For
example, we let N =

⌈
1 + 1

ϵ

⌉
= 1 +

⌈ 1
ϵ

⌉
. For n > N , we have:∣∣∣∣ 1n − 0

∣∣∣∣ = 1
n
<

1
N

< ϵ.

By definition, we have proved that { 1
n} converges to 0:

lim
n→∞

1
n
= 0.

Example 1.2.2. Suppose 0 < |r| < 1. Prove that limn→∞ rn = 0.

Proof. Let ϵ > 0 be an arbitrary positive real number. Our aim is to find an
integer N such that ∀n > N ,

|rn − 0| = |r|n < ϵ.

which is equivalent to:
n ln |r| < ln ϵ.

Note. We can only do this because ln x is a strictly increasing function.
Since 0 < |r| < 1, the real number ln |r| < 0. Thus we have:

n >
ln ϵ
ln |r| .

We choose:
N =

⌈
1 + ln ϵ

ln |r|

⌉
.

so that:
N >

ln ϵ
ln |r| .

Thus, ∀n > N we have:

n >
ln ϵ
ln |r| =⇒ |rn − 0| < ϵ.

Proving that:
lim
n→∞

rn = 0.
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Example 1.2.3. Use the definition to prove that:

lim
n→∞

n2

n2 + n− 3 = 1.

Proof. Let ϵ > 0 be an arbitrary positive real number. Our aim is to find an
integer N such that ∀n > N ,∣∣∣∣ n2

n2 + n− 3 − 1
∣∣∣∣ < ϵ.

Note that:∣∣∣∣ n2

n2 + n− 3 − 1
∣∣∣∣ = ∣∣∣∣ −(n− 3)

n2 + n− 3

∣∣∣∣ = n− 3
n2 + n− 3 , for every n > 3.

and that:
n > 3 =⇒ n− 3 < n.

and that:

n > 3 =⇒ n2 + n− 3 > n2 =⇒ 1
n2 + n− 3 <

1
n2 .

and therefore:
n > 3 =⇒ n− 3

n2 + n− 3 <
n

n2 = 1
n
.

Now, if both n > 3 and n > 1
ϵ , then we have:

n− 3
n2 + n− 3 <

1
n
< ϵ.

Therefore we choose N to be an integer such that N > max
(
3, 1

ϵ

)
:

N = 1 +
⌈
max

(
3, 1

ϵ

)⌉
.

Thus, ∀n > N we have: ∣∣∣∣ n2

n2 + n− 3 − 1
∣∣∣∣ < ϵ.

This proves that:
lim
n→∞

n2

n2 + n− 3 = 1.

Example 1.2.4. Use the definition of the limit of a sequence to prove that:

lim
n→∞

1
n
= 1.

is not valid.
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Proof. Note that: ∣∣∣∣ 1n − 1
∣∣∣∣ > 1

2 , if n > 2.

Therefore, let ϵ = 0.5, then there is no positive integer N such that:

n > N =⇒
∣∣∣∣ 1n − 1

∣∣∣∣ < 0.5.

Which concludes that:
lim
n→∞

1
n
= 1.

is not valid.

1.3 Properties of Convergent Sequences
1.3.1 Constant Sequences
The sequence {an = C}, where an = C for every n and C is a real number is
known as a constant sequence, and its limit is C :

lim
n→∞

an = C.

1.3.2 Uniqueness of the Limit

Theorem 1. Uniqueness. If limn→∞ an = L and limn→∞ an = L′, then:

L = L′.

Proof. Uniqueness of a Limit. Suppose L = L′ is not true:

L = L′ =⇒ L ̸= L′ =⇒ L− L′ ̸= 0.

Consider the case where in the formal definition of the limit, epsilon has the
following value:

ϵ = |L− L′|
2 .

Which can be used since:

L− L′ ̸= 0 =⇒ ϵ > 0.

We know by the definition of the limit that:

lim
n→∞

an = L ⇐⇒ ∃N1 ∈ N such that n > N1 =⇒ |an − L| < ϵ.

lim
n→∞

an = L′ ⇐⇒ ∃N2 ∈ N such that n > N2 =⇒ |an − L′| < ϵ.

Which therefore implies that:

|an − L| < |L− L′|
2 (1.1)

|an − L′| < |L− L′|
2 (1.2)
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Note that:
|L− L′| = |L− an + an − L′|.

And using the triangle inequality:

|L− an + an − L′| ⩽ |L− an|+ |an − L′|.

Therefore:
|L− L′| ⩽ |L− an|+ |an − L′|. (1.3)

if (n > N1) ∧ (n > N2) then by equations (1.1) to (1.2):

|an − L|+ |an − L′| < |L− L′|
2 + |L− L′|

2
|an − L|+ |an − L′| <|L− L′|

Then using equation (1.3):

|L− L′| ⩽ |an − L|+ |an − L′| < |L− L′|.

Therefore:
|L− L′| < |L− L′|.

A strict inequality, which contradicts our assumptions, therefore the theorem is
true.

1.3.3 Bounded Sequences
A sequence is bounded if there exists a positive real number M such that:

|an| ⩽ M, ∀n.

A sequence is said to be bounded from above if there is a real number M such
that:

an ⩽ M, ∀n.

and we say that M is an upper bound of {an}. A sequence is said to be
bounded from below if there is a real number m such that:

m ⩽ an, ∀n.

and we say that m is a lower bound of {an}.

Theorem 2. Bounded. If {an} is convergent, then {an} is bounded.
Consequently, an unbounded sequence is divergent.

Proof. Every convergent sequence is bounded. We know by the definition of the
limit of a convergent sequence that:

lim
n→∞

an = L ⇐⇒ ∀ϵ > 0, ∃N ∈ N s.t n > N =⇒ |an − L| < ϵ.

Take ϵ = 1 then:

∃N1 ∈ N s.t n > N1 =⇒ |an − L| < 1.
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Note that because of the triangle inequality:

|an − L| ⩾ |an| − |L|.

So for n > N1, we have:

|an| − |L| ⩽ |an − L| < 1.

Therefore:
|an| − |L| < 1.

And therefore:
|an| < |L|+ 1.

Now, let M1 = max(|a1|, |a2|, . . . , |aN1 |). This means that:

n ⩽ N1 =⇒ |an| ⩽ M1.

Now take M = max(M1, (|L|+ 1)). Then:

|an| ⩽ M, ∀n ∈ N.

1.3.4 Sum & Difference Laws
Suppose {an} and {bn} are convergent. Then {an + bn} is convergent and:

lim
n→∞

an + bn = lim
n→∞

an + lim
n→∞

bn.

Proof. Suppose the following:

lim
n→∞

an = A, lim
n→∞

bn = B, A,B ∈ R.

Let ϵ > 0 then:

lim
n→∞

an = A ⇐⇒ ∃N1 ∈ N s.t n > N1 =⇒ |an −A| < ϵ

2 (1.4)

lim
n→∞

bn = B ⇐⇒ ∃N2 ∈ N s.t n > N2 =⇒ |bn −B| < ϵ

2 . (1.5)

Now let N = max(N1, N2) so that:

n > N =⇒ (n > N1) ∧ (n > N2).

and note that:

|(an + bn)− (A+B)| = |(an −A) + (bn −B)|.

by the triangle inequality:

|(an −A) + (bn −B)| ⩽ |an −A|+ |bn −B|.

And by equations (1.4) to (1.5), for n > N :

|(an −A) + (B − bn)| ⩽ |an −A|+ |bn −B| < ϵ

2 + ϵ

2 = ϵ.

and finally:
n > N =⇒ |(an + bn)− (A+B)| < ϵ.
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Suppose {an} and {bn} are convergent. Then {an − bn} is convergent and:

lim
n→∞

an − bn = lim
n→∞

an − lim
n→∞

bn.

Proof. Suppose the following:

lim
n→∞

an = A, lim
n→∞

bn = B, A,B ∈ R.

Let ϵ > 0 then:

lim
n→∞

an = A ⇐⇒ ∃N1 ∈ N s.t n > N1 =⇒ |an −A| < ϵ

2 (1.6)

lim
n→∞

bn = B ⇐⇒ ∃N2 ∈ N s.t n > N2 =⇒ |bn −B| < ϵ

2 . (1.7)

Now let N = max(N1, N2) so that:

n > N =⇒ (n > N1) ∧ (n > N2).

and note that:

|(an − bn)− (A−B)| = |(an −A)− (bn −B)|.

by the triangle inequality:

|(an −A)− (bn −B)| ⩽ |an −A|+ |bn −B|.

And by equations (1.6) to (1.7), for n > N :

|(an −A) + (B − bn)| ⩽ |an −A|+ |bn −B| < ϵ

2 + ϵ

2 = ϵ.

and finally:
n > N =⇒ |(an + bn)− (A+B)| < ϵ.

1.3.5 Order Properties for Convergent Sequences

Theorem 3. If {an} is convergent and an ⩾ 0, ∀n ⩾ N0, then:

lim
n→∞

an ⩾ 0.

Therefore:
L ⩾ 0.

Proof. Suppose {an} is convergent and an ⩾ 0, ∀n ⩾ N0. Now suppose the limit
L opposes the property in theorem 3:

¬(L ⩾ 0) ≡ L < 0.

Consider the case where ϵ = −L
2 and since L < 0, this value of ϵ is valid. This

means that:
∃N ∈ N s.t. n > N =⇒ |an − L| < −L

2 .
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and therefore:
−
(
−L

2

)
< an − L < −L

2 .

The latter part of the inequality can be rearranged as such:

an − L < −L

2 → an < L− L

2 → an <
L

2 .

and by the supposition at the start of the proof:

L < 0 =⇒ L

2 < 0.

therefore:
an < 0.

which contradicts the assumptions held at the start of the proof.

Theorem 4. If {an} is convergent and m ⩽ an ⩽ M , ∀n ⩾ N0, then:

m ⩽ lim
n→∞

an ⩽ M.

Proof. Suppose the following conditions:

lim
n→∞

an = L, L ∈ R m ⩽ an ⩽ M, ∀n > N0.

Now considering the sequence {an−m} constructed using the laws in section 1.3.4,
we see the following property:

∀n > N0, an −m ⩾ 0.

therefore by theorem 3:

lim
n→∞

(an −m) ⩾ 0 ≡ lim
n→∞

an − lim
n→∞

m ⩾ 0 by difference law

≡ lim
n→∞

an −m ⩾ 0 by constant sequence

≡ lim
n→∞

an ⩾ m

Now considering the sequence {M−an} constructed using the laws in section 1.3.4,
we see the following property:

∀n > N0, M − an ⩾ 0.

therefore by theorem 3:

lim
n→∞

(M − an) ⩾ 0 ≡ lim
n→∞

M − lim
n→∞

an ⩾ 0 by difference law

≡ M − lim
n→∞

an ⩾ 0 by constant sequence

≡ M ⩾ lim
n→∞

an

and therefore:
m ⩽ lim

n→∞
an ⩽ M.
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Theorem 5. If {an} and {bn} are convergent and an ⩽ bn, ∀n ⩾ N0,
then:

lim
n→∞

an ⩽ lim
n→∞

bn.

Proof. Suppose the following conditions:

{an}, {bn} are convergent an ⩽ bn, ∀n ⩾ N0.

for n ⩾ N0, we see that:

an ⩽ bn → bn − an ⩾ 0.

Now considering the sequence {bn−an} constructed using the laws in section 1.3.4,
and by theorem 3:

lim
n→∞

(bn − an) ⩾ 0 ≡ lim
n→∞

bn − lim
n→∞

an ⩾ 0

≡ lim
n→∞

bn ⩾ lim
n→∞

an

1.4 Divergent Sequences
To prove that a sequence {an} is divergent, we have to show that for every
arbitrary real number L ∈ R, we can find a positive real number ϵ > 0 such that
for every positive integer N , there is some integer n > N where |an − L| ⩾ ϵ.

Example 1.4.1. Prove that the sequence {(−1)n} diverges.

Proof. Note that a2n = 1 and a2n+1 = −1, so for an arbitrary real number L,
either of the following conditions hold:

|a2n − L| ⩾ 1
2 or |a2n+1 − L| ⩾ 1

2 .

So taking ϵ = 1
2 for every positive integer N , we have either:

|a2N − L| ⩾ 1
2 or |a2N+1 − L| ⩾ 1

2 .

and there is always an n > N such that |an − L| ⩾ 1
2 . Therefore, we conclude

that the sequence diverges.

1.4.1 Divergence to ∞
We say a sequence {an} diverges to ∞, denoted limn→∞ an = ∞, if:

∀M ∈ R+ > 0, ∃N ∈ N s.t. an > M, ∀n > N.

We say a sequence {an} diverges to −∞, denoted limn→∞ an = −∞, if:

∀M ∈ R+ > 0, ∃N ∈ N s.t. an < −M, ∀n > N.
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Example 1.4.2. Prove by definition:

lim
n→∞

n2

n+ 1 = ∞.

Proof. For every positive real number M , we must find a positive integer N such
that:

n > N =⇒ n2

n+ 1 −M > 0.

Note that:
n2

n+ 1 = (n− 1) + 1
n+ 1 .

Given any positive real number M :

n2

n+ 1 −M = (n− 1) + 1
n+ 1 −M.

we see that:
(n− 1) + 1

n+ 1 −M > n− 1−M > 0.

so we choose N = M + 1, which works for any M . Therefore we conclude that:

lim
n→∞

n2

n+ 1 = ∞.



Lecture No. 2

Limit Evaluation

2.1 Properties of Limits

Theorem 6. Interchange Order. Suppose limn→∞ an = L and f is contin-
uous at L. Then:

lim
n→∞

f(an) = f
(
lim
n→∞

an
)
= f(L).

Example 2.1.1. Evaluate limn→∞ sin( 1n ).

lim
n→∞

sin
(
1
n

)
= sin

(
lim
n→∞

(
1
n

))
= sin 0 = 0.

Example 2.1.2. Evaluate limn→∞ e
1
n .

lim
n→∞

e
1
n = elimn→∞

1
n = e0 = 1.

Example 2.1.3. Evaluate limn→∞

(
n2

n2+3

)3
.

lim
n→∞

(
n2

n2 + 3

)3

=
(

lim
n→∞

n2

n2 + 3

)3

= 13 = 1.

Proof. Interchange Order. Let ϵ > 0. Since f(x) is continuous at x = L, ∃δ > 0
such that:

|x− L| < δ =⇒ |f(x)− f(L)| < ϵ.

and this can be rewritten in context to:
|an − L| < δ =⇒ |f(an)− f(L)| < ϵ (2.1)

Since limn→∞ an = L, ∃N ∈ Z such that:
n > N =⇒ |an − L| < δ

=⇒ |f(an)− f(L)| < ϵ by equation (2.1)
And therefore we have proven that:

lim
n→∞

f(an) = f(L) = f
(
lim
n→∞

an
)
.

15
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2.2 Subsequences

Definition 2. Subsequence. A subsequence (denoted as {ank
}k) of {an}n

is a sequence obtained from the sequence an, such that:

n1 < n2 < n3 · · · .

Example 2.2.1. State the terms of the subsequence {an2}:

{an2} = a1, a4, a9, a16, . . . .

Example 2.2.2. State the terms of the subsequence {an+3}:

{an+3} = a4, a5, a6, a7, . . . .

Theorem 7. Convergence of subsequences. If limn→∞ an = L, then every
subsequence of {an} converges to L.

Example 2.2.3. We know that:

lim
n→∞

n

n+ 1 = 1.

Therefore, by the convergence of subsequences, the following limits are true:

lim
n→∞

2n
2n+ 1 = 1

lim
n→∞

5n+ 1
(5n+ 1) + 1 = 1

lim
n→∞

n2

n2 + 1 = 1

Proof. We want to prove that:

lim
n→∞

an = L =⇒ lim
n→∞

ank
= L.

Note. {ank
} is a subsequence of {an}.

We also know that since nk is strictly increasing, that the following inequality
must hold true:

k ⩽ nk.

Now, let ϵ > 0. We want to show that ∃k0 ∈ Z such that:

|ank
− L| < ϵ ∀k > k0.

Since limn→∞ an = L:

∃N ∈ Z such that n > N =⇒ |an − L| < ϵ.

And since nk ⩾ k, for k > N , we have nk > N and therefore:

nk > N =⇒ |ank
− L| < ϵ.

Proving that:
lim
n→∞

ank
= L.
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As a consequence, we can conclude that limn→∞ an does not exist in the
following cases:

1. There is a divergent subsequence of {an}.

2. There are two convergent subsequences of {an} with different limits.

Example 2.2.4. Consider the following sequence:

an =
{
ln
( 1
n

)
if n = 3k,

π if n ̸= 3k.

Here the subsequence {a3n} =
{
ln
( 1
3n
)}

. Thus it diverges, and therefore the
sequence {an} diverges.
Example 2.2.5. Consider the following sequence:

{an} = {(−1)n}.

The odd subsequence {a2n−1} = {−1} while the even subsequence {a2n} = {1}.
Thus the sequence diverges.

Theorem 8. Convergence of odd and even subsequences to the same limit.
When the odd subsequence and the even subsequence converge to the same
limit, then the sequence converges to that same limit.

lim
n→∞

a2n = lim
n→∞

a2n−1 = L ⇐⇒ lim
n→∞

an = L.

Example 2.2.6. Determine the convergence of the following sequence:

an =
{

2k
2k+1 if n = 2k,
e1/(2k−1) if n = 2k − 1.

Evaluating the even subsequence:

lim
n→∞

a2n = lim
n→∞

(
2n

2n+ 1

)
= 1.

And evaluating the odd subsequence:

lim
n→∞

a2n−1 = lim
n→∞

e1/(2k−1) = elimn→∞
1

2n−1 = e0 = 1.

Since both the odd and even subsequences converge to 1, we can conclude:

lim
n→∞

an = 1.

2.3 Techniques
2.3.1 Dividing by the highest power of n in the denomina-

tor
When evaluating the limit of a sequence that is expressed as a fraction, we can
divide both the numerator and the denominator by the highest power of n in
the denominator:
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Example 2.3.1. Determine if the following sequence converges, and if so, find
its limit:

an = 1 + n

2 + n
.

Dividing by the highest power of n in the denominator:

lim
n→∞

1 + n

2 + n
= lim

n→∞

1 + n

2 + n
·

1
n
1
n

= lim
n→∞

1
n + 1
2
n + 1

= 0 + 1
0 + 1 = 1.

Example 2.3.2. Determine if the following sequence converges, and if so, find
its limit:

an = n2 + n+ 3
5 + n

.

Note that:

lim
n→∞

n2 + n+ 3
5 + n

= lim
n→∞

n2 + n+ 3
5 + n

·
1
n2

1
n2

= lim
n→∞

1 + 1
n + 3

n2

5
n2 + 1

n

= ∞.

And therefore we can conclude that the sequence diverges.

2.3.2 Multiplying by the conjugate
Certain limits can be rationalised by multiplying them by their conjugate:
Example 2.3.3. Determine if the following sequence converges, and if so, find
its limit:

an =
√
n2 + 2021−

√
n2 + 1101n.

Note that:

lim
n→∞

√
n2 + 2021−

√
n2 + 1101n ·

√
n2 + 2021 +

√
n2 + 1101n

√
n2 + 2021 +

√
n2 + 1101n

.

Evaluates to:
lim
n→∞

(n2 + 2021)− (n2 + 1101n)
√
n2 + 2021 +

√
n2 + 1101n

.

And the n2 term cancels out to give:

lim
n→∞

2021− 1101n
√
n2 + 2021 +

√
n2 + 1101n

.

From here we can use the technique in section 2.3.1:

lim
n→∞

2021− 1101n
√
n2 + 2021 +

√
n2 + 1101n

·
1
n
1
n

= lim
n→∞

2021
n − 1101√

1 + 2021
n2 +

√
1 + 1101

n

.

And therefore:
lim
n→∞

an = −1101
2 .
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2.4 Squeeze Theorem

Theorem 9. Squeeze Theorem. Given three sequences {an}, {bn}, {cn}, if
there is an integer N0 such that ∀n ⩾ N0:

an ⩽ bn ⩽ cn.

and
lim
n→∞

an = lim
n→∞

cn = L.

then:
lim
n→∞

bn = L.

Example 2.4.1. Does the following limit exist, and if so, what is its limit?

lim
n→∞

cosn
n

.

Note. We cannot use the product rule of limits since the rule follows the
assumption that the sequences being multiplied together are both convergent,
and we know that cosn is divergent.

For n ⩾ 1, we have the following inequality:

−1 ⩽ cosn ⩽ 1.

Multiplying throughout by 1
n we obtain:

− 1
n
⩽

cosn
n

⩽
1
n
.

Since we know that:
lim
n→∞

1
n
= 0 = lim

n→∞
− 1
n
.

By the squeeze theorem, we can conclude that:

lim
n→∞

cosn
n

= 0.

Example 2.4.2. Does the following limit exist, and if so, what is its limit?

lim
n→∞

3n
n! .

For n ⩾ 4, we have:
0 <

3n
n! = 3

1
3
2
3
3
3
4 · · · 3

n− 1︸ ︷︷ ︸
<1

3
n
.

By replacing terms where n ⩾ 4 with 1, we see the following inequality:
3
1
3
2
3
3
3
4 · · · 3

n− 1︸ ︷︷ ︸
<1

3
n
⩽

3
1
3
2
3
3 1 · · · 1︸ ︷︷ ︸

=1

3
n
= 27

2n.

Which gives us the following result:

0 <
3n
n! ⩽

27
2n.
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and we know that:
lim
n→∞

0 = lim
n→∞

27
2n = 0.

By the squeeze theorem, we can conclude that:

lim
n→∞

3n
n! = 0.

2.5 Fitting with a Function

Theorem 10. Fitting with a Function. Suppose {an} is a sequence such
that there is a function f : R 7→ R and an integer n0 such that an =
f(n) ∀n ⩾ n0. Then the following hold true:

lim
x→∞

f(x) = L =⇒ lim
n→∞

an = L.

lim
x→∞

f(x) = ±∞ =⇒ lim
n→∞

an = ±∞.

Note. When a sequence {an} can be fitted by a function f(x), we can apply
L’Hopital’s rule to limx→∞ f(x).
Example 2.5.1. Does the following limit exist, and if so, what is its limit?

lim
n→∞

3n+ en

en − n
.

Let f(x) = 3x+ex

ex−x . Now note that:

lim
x→∞

3x+ ex

ex − x

L’Hopital’s Rule−−−−−−−−−−→ lim
x→∞

3 + ex

ex − 1
L’Hopital’s Rule−−−−−−−−−−→ lim

x→∞

ex

ex
= 1.

Thus we have:
lim
n→∞

3n+ en

en − n
= lim

x→∞

3x+ ex

ex − x
= 1.

Example 2.5.2. Does the following limit exist, and if so, what is its limit?

lim
n→∞

(
1 + 1

n

)n

.

Let f(x) =
(
1 + 1

x

)x. Now note that:

lim
x→∞

f(x) = lim
x→∞

(
1 + 1

x

)x

= lim
x→∞

ex ln(1+ 1
x ) = elimx→∞ x ln(1+ 1

x ).

Now note that:

lim
x→∞

x ln
(
1 + 1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1
x

L’Hopital’s Rule−−−−−−−−−−→ lim
x→∞

1
1+ 1

x

(
− 1

x2

)(
− 1

x2

) = 1.

Thus we have:
lim
x→∞

f(x) = elimx→∞ x ln(1+ 1
x ) = e1 = e.

We conclude that:

lim
n→∞

(
1 + 1

n

)n

= lim
x→∞

(
1 + 1

x

)x

= e.
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2.6 Monotone Convergence Theorem

Definition 3. Non-decreasing, non-increasing, and monotonic sequences.
A sequence {an} is said to be non-decreasing for n ⩾ n0 if an ⩽ an+1 for
every n ⩾ n0 for some n0 ∈ Z.

A sequence {an} is said to be non-increasing for n ⩾ n0 if an ⩾ an+1 for
every n ⩾ n0 for some n0 ∈ Z.

A sequence {an} is said to be monotonic if it is either non-decreasing or
non-increasing.

Recall that all convergent sequences are bounded, but not all bounded sequences
are convergent.

Theorem 11. Monotone Convergence Theorem. Every bounded mono-
tonic sequence is convergent.

This theorem is used to show the existence of a limit, but it does not give the
value of the limit. It is often used to show that a recursive sequence is convergent.
Example 2.6.1. Consider the following sequence:

an = n

n2 + 1 .

Show that the sequence is decreasing, explain why it is bounded, find out whether
it is convergent.
Let f(x) = x

x2+1 . Now note that:

f ′(x) = 1− x2

(x2 + 1)2 < 0 ∀x > 1.

Therefore we can say that f is decreasing on [1,∞). Hence the sequence is
decreasing. Since the sequence is decreasing, we have:

0 <
n

n2 + 1︸ ︷︷ ︸
an

< · · · < a3 < a2 <
1
2 , ∀n ⩾ 1.

Therefore the sequence is bounded. Since the sequence is bounded and monotonic,
it is convergent.
Example 2.6.2. Consider the following sequence:

a0 = 0, a1 =
√
2, a2 =

√
2 +

√
2, a3 =

√
2 +

√
2 +

√
2, . . .

Determine if the sequence is bounded, and if it is monotonic, and as a consequence
if it is convergent.

Proof. We want to show that the sequence is bounded, and we can use induction
to show that:

0 ⩽ an ⩽ 2.
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For the base case n = 0 this assumption holds true. Assuming that this inequality
holds for an arbitrary n, we have to check the case for n+ 1. We know that:

an+1 =
√
2 + an.

And since we assume in the inductive hypothesis that an ⩽ 2 we can safely say
the following: √

2 + an ⩽
√
2 + 2.

Which therefore means that an+1 ⩽ 2 thus proving it true ∀n ∈ Z. Making the
sequence bounded.

Now we need to check if the sequence is monotonic. Looking at the sequence,
we can see that it seems to be increasing, we just need to prove this assumption.

Proof. We can use induction to check if:

an < an+1.

For the base case n = 0 we can see that it holds true. Assuming that hits
inequality holds for some arbitrary n, we have to check the case for n+ 1. We
know that:

an+2 =
√
2 + an+1

>
√
2 + an

∴ an+2 > an+1

Therefore the sequence is strictly increasing and therefore monotonic.

Since the sequence is bounded and monotonic, we can conclude that the
sequence is convergent. To find the limit of the sequence, we can apply a limit
to the following recurrence:

an+1 =
√
2 + an.

and then re-arrange the result:

lim
n→∞

an+1 = lim
n→∞

√
2 + an =

√
2 + lim

n→∞
an.

Which gives us the following:

L =
√
2 + L ⇐⇒ L2 − L− 2 = 0

⇐⇒ (L− 2)(L+ 1) = 0
⇐⇒ L = 2 or L = −1

And since 0 ⩽ L ⩽ 2 we can conclude that:

lim
n→∞

an = 2.



Lecture No. 3

Series: A Special Sequence

3.1 Series
Definition 4. Partial Sums & Infinite Series. Consider a sequence {an}.
A partial sum or an n-th partial sum is the sum sn of finite number of
ordered terms defined by:

sn = a1 + a2 + · · ·+ an

=
n∑

k=1
ak

A series or an infinite series is an expression of the form:
∞∑

n=1
an = a1 + a2 + a3 + · · ·+ an + · · ·+ .

Note that {sn} forms a sequence of partial sums:

s1, s2, s3, . . . , sn, . . . .

Using the limit symbol, we have:

∞∑
n=1

an = lim
m→∞

(
m∑

n=1
an

)
.

which may or may not exist in general.

Definition 5. Convergent Series & Sum. Given a sequence {an}, if the
sequence of partial sums {sn} converges to a number s, then the series∑∞

n=1 anis said to be convergent and its sum is s:

∞∑
n=1

an = s.

The number s is called the sum of the series.

23
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3.2 Geometric Series
Definition 6. Geometric Series. A geometric sequence is a sequence
{arn}∞n=0, where a ̸= 0 is a constant and an+1

an
= r is a constant, known as

the common ratio r:

a, ar, ar2, ar3, . . . , arn, . . . .

The corresponding series:
∞∑

n=0
arn = a+ ar + ar2 + ar3 + · · ·+ arn + · · ·

is called a geometric series.

Example 3.2.1. The series:

1
2 + 1

4 + 1
8 + · · ·+ 1

2n + · · · =
∞∑

n=0

1
2

(
1
2

)n

.

is a geometric series with a = 1
2 and the common ratio r = 1

2 .
Example 3.2.2. The series:

1− 1 + 1− 1 + · · ·+ (−1)n−1 + · · · =
∞∑

n=0
(−1)n.

is a geometric series with a = 1 and the common ratio r = −1.

Theorem 12. The geometric series:
∞∑

n=0
arn = a+ ar + ar2 + ar3 + · · ·+ arn + · · · .

where a ̸= 0 is convergent if |r| < 1. Its limit is:
a

1− r
.

The geometric series is divergent if |r| ⩾ 1.

Proof. Equation for limit of a convergent series. If r = 1, the series is of the
form:

a+ a+ a+ · · ·+ a+ · · · .

which diverges to ∞. Whereas if r = −1, the series is of the form:

a− a+ a− · · ·+ a− · · · .

which never converges to a number. For |r| ≠ 1, we let:

sn = a+ ar + ar2 + ar3 + · · ·+ arn. (3.1)
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When multiplied by r gives:

rsn = ar + ar2 + ar3 + · · ·+ arn+1. (3.2)

And if we take equation (3.2) away from equation (3.1), we get the following:

(1− r)sn = a− arn+1.

Which therefore gives us:
sn = a(1− rn+1)

1− r
.

If |r| < 1, then limn→∞ rn+1 = 0. It follows that:

lim
n→∞

sn = lim
n→∞

a(1− rn+1)
1− r

= a

1− r
.

Therefore:
∞∑

n=0
arn = a

1− r
.

If |r| > 1, then the geometric series diverges since limn→∞ rn+1 does not exist.

3.3 Telescoping Series
A telescoping series is a series which can be expressed as:

∞∑
n=1

an − an+m,

for some m.
Example 3.3.1. Evaluate an and m in the following telescoping series:

∞∑
n=1

(
1

n2 + 9 − 1
(n+ 3)2 + 9

)
.

We see that an = 1
n2+9 , m = 3.

Example 3.3.2. Evaluate an and m in the following telescoping series:
∞∑

n=1

(
cos
(π
n

)
− cos

(
π

n+ 2

))
.

We see that an = cos
(
π
n

)
, m = 2.

Consider a telescoping series:
∞∑

n=1
an − an+m,

where m is a fixed integer. Let sn be the partial sum which is evidently of the
following form:

sn =
N∑

n=1
(an − an+m).



LECTURE NO. 3. SERIES: A SPECIAL SEQUENCE 26

For N > m, we have:

sn =
N∑

n=1
(an − an+m)

=
(

N∑
n=1

an

)
−
(

N∑
n=1

an+m

)

=
(

m∑
n=1

an +
N∑

n=m+1
an

)
−
(

N∑
n=m+1

an +
N+m∑

n=N+1
an

)

=
(

m∑
n=1

an

)
−
(

N+m∑
n=N+1

an

)

which is simply the sum of the first m terms minus the sum of the last m terms.
Note that as N → ∞, we have:

∞∑
n=1

(an − an+m) = lim
N→∞

N∑
n=1

(an − an+m)︸ ︷︷ ︸
sn

= lim
N→∞

sn.

Therefore if limN→∞ an = L exists, then:

∞∑
n=1

(an − an+m) = lim
N→∞

(
m∑

n=1
an −

N+m∑
n=N=1

an

)

=
m∑

n=1
an − lim

N→∞

N+m∑
n=N+1

an

=
m∑

n=1
an − lim

N→∞
(aN+1 + aN+2 + · · ·+ aN+m)

=
(

m∑
n=1

an

)
−mL.

If limN→∞ aN does not exist, then the telescoping series is divergent.
Example 3.3.3. Consider the telescoping series:

∞∑
n=1

(
cos
(π
n

)
− cos

(
π

n+ 2

))
.

Note that an = cos
(
π
n

)
, and m = 2. For N > 2, we have:

sn =
2∑

n=1
cos
(π
n

)
−

N+2∑
n=N+1

cos
(π
n

)
.

Note. limn→∞ cos
(
π
n

)
= cos 0 = 1.
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Therefore we have:
∞∑

n=1

(
cos
(π
n

)
− cos

(
π

n+ 2

))
=

2∑
n=1

cos
(π
n

)
− lim

N→∞

N+2∑
n=N+1

cos
(π
n

)
=
(
cos(π) + cos

(π
2
))

− 2(1)

= −1− 2
= −3

The given telescoping series converges to −3.

3.4 Harmonic Series
The harmonic series is the following series:

1 + 1
2 + 1

3 + 1
4 + · · ·+ 1

n
+ · · · =

∞∑
n=1

1
n
.

Note that limn→∞ an = limn→∞
1
n = 0.

Proof. Divergence of the Harmonic Series.
Note. The sequence of partial sums {sn} has a subsequence of the form {s2k}.
Taking a look at the subsequence:

s1 = 1

s2 = 1 + 1
2

s4 = 1 + 1
2 +

(
1
3 + 1

4

)
⩾ 1 + 1

2 +
(
1
4 + 1

4

)
= 1 + 2

(
1
2

)
s8 = 1 + 1

2 +
(
1
3 + 1

4

)
+
(
1
5 + 1

6 + 1
7 + 1

8

)
⩾ 1 + 1

2 +
(
1
4 + 1

4

)
+
(
1
8 + 1

8 + 1
8 + 1

8

)
= 1 + 3

(
1
2

)
Principally, we wish to establish the following inequality:

s2n ⩾ 1 + n

(
1
2

)
.

We have verified that the inequality holds true for n = 0, 1, 2. Now, suppose the
following statement is true:

s2n ⩾ 1 + n

(
1
2

)
, n ∈ Z.

Now, we consider the case n+ 1:

s2n+1 = 1 + 1
2 + 1

3 + · · ·+ 1
2n︸ ︷︷ ︸

s2n

+ 1
2n + 1 + 1

2n + 2 + · · ·+ 1
2n+1

⩾ s2n +
(

1
2n + 2n + 1

2n + 2n + · · ·+ 1
2n + 2n

)
︸ ︷︷ ︸

contains 2n terms
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Since 2n
2n+1 = 1

2 :

⩾ 1 + n

(
1
2

)
+ 1

2

⩾ 1 + (n+ 1)12
Continuing on, we see that:

lim
n→∞

s2n = ∞.

Therefore:
lim
n→∞

sn = ∞.

Making the series divergent.

3.5 Properties
If
∑∞

n=1 an and
∑∞

n=1 bn are convergent series, then so are c
∑∞

n=1 an,
∑∞

n=1(an+
bn) and

∑∞
n=1(an − bn), where c is any constant. The following laws apply:

•
∑∞

n=1 can = c
∑∞

n=1 an.

•
∑∞

n=1(an + bn) =
∑∞

n=1 an +
∑∞

n=1 bn.

•
∑∞

n=1(an − bn) =
∑∞

n=1 an −
∑∞

n=1 bn.

Because of the properties for convergent series, we have the following:

• Every non-zero constant multiple of a divergent series is divergent.

• If
∑∞

n=1 an converges and
∑∞

n=1 bn diverges, then
∑∞

n=1(an ± bn) diverges.

3.6 Test for Divergence

Theorem 13. Necessary condition for series convergence. If the series:
∞∑

n=1
an.

is a convergent series, then:

lim
n→∞

an = 0.

Note. limn→∞ an = 0 does not imply that the series converges (Harmonic
Series).

Proof. Note that:
an = sn − sn−1.

Suppose that:
∞∑

n=1
an = s.
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for some number s. Then:

lim
n→∞

sn = lim
n→∞

sn−1 = s.

Therefore, we have:

lim
n→∞

an = lim
n→∞

(sn − sn−1) = s− s = 0.

The above result is useful in its contrapositive form:

If limn→∞ an does not exist or does not equal to 0, then the series
∑∞

n=1 an
diverges.



Lecture No. 4

Indefinite & Definite
Integrals

4.1 Antiderivatives & Indefinite Integrals

Definition 7. Antiderivative. A function F is said to be an antiderivative
of f on an open interval I if F ′(x) = f(x) ∀x ∈ I.

Note. An antiderivative of f is defined for f on an open set, which is a union
of open intervals.

Theorem 14. Let F (x) and G(x) be two antiderivatives of f on an open
interval I. Then, G(x) = F (x) + C on I, for some constant C.

Proof. Let us choose two arbitrary real numbers x1, x2 ∈ I where x1 < x2. Next,
let us construct a function h(x) on [x1, x2] and let:

h(x) = G(x)− F (x).

Since G(x) and F (x) are anti derivatives of f(x) on I, the following equations
are true:

G′(x) = f(x)
F ′(x) = f(x)

Both G(x) and F (x) are differentiable on I, which implies that both G(x) and
F (x) are continuous on I and in particular on [x1, x2]. Therefore, we can say that
h(x) = G(x)−F (x) is also continuous on [x1, x2] and that it is also differentiable
on I. By the Mean Value Theorem, we have the following equation that holds
true:

h(x2)− h(x1)
x2 − x1

= h′(c), c ∈ (x1, x2).

And now we have:

h′(c) = G′(c)− F ′(c)
= f(c)− f(c) = 0

30
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Therefore we have:
h(x2)− h(x1)

x2 − x1
= 0.

Which means that:
h(x2)− h(x1) = 0.

Since x1, x2 ∈ I, we have:

h(x1) = h(x2) = C.

where C is some constant. We therefore conclude that:

h(x) = C ∀x ∈ I

G(x)− F (x) = C ∀x ∈ I

∴ G(x) = F (x) + C ∀x ∈ I

Definition 8. Indefinite Integral. The indefinite integral of f , denoted
by: ∫

f(x) dx.

is the most general antiderivative of f . The function f is called the inte-
grand.

Example 4.1.1. For I = R, we have:∫
cos(x) dx = sin(x) + C.

Where C is an arbitrary constant.
Example 4.1.2. For I = (0,∞), we have:∫

3x2 − 2
√
x
dx = x3 − 4

√
x+ 179 + C.

Where C is an arbitrary constant.
By definition, we have:

d
dx

(∫
f(x) dx

)
= f(x).

Thus, to verify
∫
f(x) dx = F (x), we verify:

d
dx (F (x)) = f(x).

Example 4.1.3. Prove that for I ⊆ (0,∞) or I ⊆ (−∞, 0), we have:∫ 1
x
dx = ln |x|+ C.
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Solution. First we note that it follows from the definition that:∫
f(x) dx = ln |x|+ C ⇐⇒ d

dx (ln |x|+ C) = f(x)

⇐⇒ d
dx ln |x| = 1

x

For I ⊆ (0,∞), we have x > 0 and:

d
dx (ln |x|) =

d
dx (ln x) =

1
x
.

For I ⊆ (−∞, 0), we have x < 0 and:

d
dx (ln |x|) =

d
dx (ln−x) = 1

−x
· −1 = 1

x
.

Therefore we have proven that:

d
dx ln |x| = 1

x
.

And by definition, we have: ∫ 1
x
dx = ln |x|+ C.

4.2 Rules for Integration

Theorem 15. Rules for Integration.∫
(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx∫

(f(x)− g(x)) dx =
∫

f(x) dx−
∫

g(x) dx∫
cf(x) dx = c

∫
f(x) dx, where c is a constant

To prove the above properties, we verify that the derivatives of functions on
both sides are equal.

Proof. The integral of a sum is the sum of the integrals. We can prove this by
differentiating the expression on the right.

d
dx

(∫
f(x) dx+

∫
g(x) dx

)
= d

dx

(∫
f(x) dx

)
+
(∫

g(x) dx
)

= f(x) + g(x)

Thus, we have: ∫
(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx.

The same proof method is used for the other rules.
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Example 4.2.1. If f ′(x) = 2x− 3 and f(2) = 3, find f(x) where x ∈ R.
Solution. Since f ′(x) = 2x− 3, we have:

f(x) =
∫

2x− 3 dx = x2 − 3x+ C.

for some constant C. Given that f(2) = 3, we obtain C = 5. Thus:

f(x) = x2 − 3x+ 5.

4.3 The Definite Integral & Area Under a Curve
To find the area under a curve y = f(x), where f(x) > 0 from x = a to x = b,
we divide the interval [a, b] into n equal subintervals:

[x0, x1], [x1, x2], . . . , [xk−1, xk], . . . , [xn−1, xn].

The width of each subinterval is:

∆x = xk − xk−1 = b− a

n
.

We have x0 = a and xn = b. Thus, we have:

xk = x0 + k

(
b− a

n

)
k = 0, 1, 2, 3, . . . , n.

In each k-th subinterval [xk−1, xk], we choose a point x∗
k and evaluate the value

f(x∗
k). The area of the k-th rectangle, over [xk−1, xk], with height f(x∗

k), is:

f(x∗
k)∆x = b− a

n
f(x∗

k).

Now, we approximate the area under the curve y = f(x) by the total areas of all
these rectangles:

n∑
k=1

(
b− a

n

)
f(x∗

k).

This sum is called a Riemann Sum of f on [a, b]. If the function is well-behaved,
as we increase the number n of subintervals, the length of subinterval ∆x tends
to zero, making the approximation reach the area A under the curve:

A = lim
n→∞

n∑
k=1

(
b− a

n

)
f(x∗

k).

In general, the limit may not exist, however, if it exists ,we say that f isRiemann
integrable on [a, b]. The definite integral of f from a to b, denoted by:∫ b

a

f(x) dx.

Which is the value of the limit. This value is independent of our choice of x∗
k.
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Theorem 16. Existence of Definite Integral. If f is continuous or monotonic
or piecewise continuous with a finite number of discontinuities on [a, b], then
the definite integral: ∫ b

a

f(x) dx

does exist.

Note that if a > b we define:∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

And if a = b, we define: ∫ b

a

f(x) dx = 0.

For a general function f , the definite integral:∫ b

a

f(x) dx.

is the net area between the graph of y = f(x) and the x-axis.
Note. The definite integral is a number which is independent of the variable x:∫ b

a

f(x) dx =
∫ b

a

f(t) dt =
∫ b

a

f(s) ds.

Where the variables x, t, s are dummy variables.
Note. If f is an odd continuous function. Then:∫ a

−a

f(x) dx = 0.

4.4 Riemann Sum using Equal-width Partition
Consider a continuous function f on [a, b], where the definite integral exists. We
shall consider a special Riemann sum and use it to compute the value of the
definite integral. Suppose the width of each subinterval is the same:

∆x = b− a

n
.

Then:
xk = a+ k

(
b− a

n

)
k = 0, 1, 2, . . . , n.

With x∗
k ∈ [xk−1, xk], the corresponding Riemann sum of f on [a, b] is:

n∑
k=1

b− a

n
f(x∗

k).

And the definite integral of f from a to b is:∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

b− a

n
f(x∗

k).
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Where the limit of the Riemann sum as n → ∞ must be independent of how the
sample points x∗

k are chosen. With the right endpoints as sample points, we
have the right Riemann sum:∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(xk)
b− a

n

= lim
n→∞

n∑
k=1

f

(
a+ k(b− a)

n

)
· b− a

n

With the left endpoints as sample points, we have the left Riemann sum:∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(xk−1)
b− a

n

= lim
n→∞

n∑
k=1

f

(
a+ (k − 1)(b− a)

n

)
· b− a

n

Example 4.4.1. Use the right Riemann sums to find the value of the following
definite integral: ∫ 3

1
x2 dx.

Solution. Partition the interval [1, 3] into n subintervals of equal width:

∆x = 3− 1
n

= 2
n
.

Thus we have:
xk = 1 + k∆x = 1 + 2k

n
.

And our Riemann sum is of the following form:
n∑

k=1
f(x∗

k)∆x =
n∑

k=1
f

(
1 + 2k

n

)
∆x

=
n∑

k=1

(
1 + 2k

n

)2

· 2
n

= 2
n

n∑
k=1

(
1 + 4k

n
+ 4k2

n2

)

= 2
n

(
n∑

k=1
1 +

n∑
k=1

4k
n

+
n∑

k=1

4k2
n2

)

= 2
n

(
n+ 4

n

n∑
k=1

k + 4
n2

n∑
k=1

k2

)

= 2
n

(
n+ 1

n
· n(n+ 1)

2 + 4
n2 · n(n+ 1)(2n+ 1)

6

)
= 2

(
1 + 2 + 2

n
+ 2

3

(
2 + 3

n
+ 1

n2

))
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Therefore the definite integral:∫ 3

1
x2 dx = lim

n→∞

[
2 +

(
1 + 2 + 2

n
+ 2

3

(
2 + 3

n
+ 1

n2

))]
= 26

3 .

4.5 Properties of Definite Integrals

Theorem 17. If the integral on the left hand side of the equation exists,
the result on the right is true:∫ b

a

cdx = c(b− a)∫ b

a

Kf(x) dx = K

∫ b

a

f(x) dx∫ b

a

(f(x)± g(x)) dx =
∫ b

a

f(x) dx±
∫ b

a

g(x) dx∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx

Where K is a constant.

Example 4.5.1. Suppose f is continuous on R, and:∫ 3

0
f(x) dx = 3,

∫ 4

0
f(x) dx = 7.

Find: ∫ 3

4
f(x) dx.

Solution. ∫ 3

4
f(x) dx = −

∫ 4

3
f(x) dx

= −
(∫ 4

0
f(x) dx−

∫ 3

0
f(x) dx

)
= −(7− 3)
= −4

Theorem 18. Suppose the following integrals exist and a < b.

f(x) ⩾ 0 ∀x ∈ [a, b] =⇒
∫ b

a

f(x) dx ⩾ 0.

f(x) ⩾ g(x) ∀x ∈ [a, b] =⇒
∫ b

a

f(x) dx ⩾
∫ b

a

g(x) dx.

m ⩾ f(x) ⩾ M ∀x ∈ [a, b] =⇒ m(b− a) ⩾
∫ b

a

f(x) dx ⩾ M(b− a).



Lecture No. 5

Fundamental Theorem of
Calculus

5.1 The First Fundamental Theorem of Calculus
The fundamental theorem gives the precise inverse relationship between the
derivative and the definite integral.

Definition 9. Mean Value. If f is continuous on [a, b], then the mean
value (also known as the average value) of f on [a, b] is:

1
b− a

∫ b

a

f(x) dx.

Example 5.1.1. What is the mean value of f(x) = x2 on the interval [1, 3]?
Solution. We had previously calculated in section 4.4 that:∫ 3

1
x2 dx = 26

3 .

Thus the mean value of x2 on [1, 3] is:

1
3− 1

∫ 3

1
x2 dx = 1

3− 1 · 263

= 13
3 .

Theorem 19. The Mean Value Theorem for Definite Integrals. If f is
continuous on [a, b], then ∃c ∈ [a, b] such that:

f(c) = 1
b− a

∫ b

a

f(x) dx.

Otherwise written:
(b− a)f(c) =

∫ b

a

f(x) dx.

37
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Proof. Mean Value Theorem for Definite Integrals. Suppose f is continuous
on the interval [a, b]. Then we know that f has a maximum M = f(s) and a
minimum m = f(r) on [a, b] by the Extreme Value Theorem. By one of the
order properties of the definite integral, we then have:

m(b− a) ⩽
∫ b

a

f(x) dx ⩽ M(b− a).

And if we divide by b− a we get:

f(r) = m ⩽
1

b− a

∫ b

a

f(x) dx ⩽ M = f(s).

By the Intermediate Value Theorem, f must take on every value between
f(r) and f(s). Therefore, ∃c ∈ [a, b] such that:

f(c) = 1
b− a

∫ b

a

f(x) dx.

Theorem 20. First Fundamental Theorem of Calculus. Suppose f is
continuous on [a, b]. Let F (x) be the function defined by:

F (x) =
∫ x

a

f(t) dt, a ⩽ x ⩽ b.

Then F (x) is continuous on [a, b], and F (x) is differentiable on (a, b) where:

F ′(x) = d
dx

(∫ x

a

f(t) dt
)

= f(x).

Note. In the integral above, the lower limit a is a constant, and the upper limit
of the integral is the variable x.

Proof. First Fundamental Theorem of Calculus. The definite integral:

F (x) =
∫ x

a

f(t) dt.

Is the area under f(t) on the interval [a, x]. Note the F (x) is a continuous
function for x ∈ [a, b]. Then:

∆F

∆x
= F (x+ h)− F (x)

h
=

∫ x+h

x

f(t) dt

h
= h · f(x∗)

h
= f(x∗).

Where x∗ is between x and x+ h. As h → 0, we have x∗ → x, and hence:
F (x+ h)− F (x)

h
→ f(x).

Thus, we have:
F ′(x) = f(x).
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Example 5.1.2. Let b > 1. Find g′(x), where:

g(x) =
∫ x

1

sin(t)
t

dt, 1 ⩽ x ⩽ b.

Solution. By the First Fundamental Theorem of Calculus, the function:

g(x) =
∫ x

1

sin(t)
t

dt

is continuous on [1, b] and is differentiable in (1, b) and:

g′(x) = d
dx

(∫ x

1

sin(t)
t

dt
)

= sin(x)
x

.

Example 5.1.3. Find the following:

d
dx

(∫ π

x

e(t−3)2 dt
)
.

Note. The lower limit of the integral is not a constant.
Solution.

d
dx

(∫ π

x

e(t−3)2 dt
)

= d
dx

(
−
∫ x

π

e(t−3)2 dt
)

= − d
dx

(∫ x

π

e(t−3)2 dt
)

= −e(x−3)2 .

Note. In general, we have the following:

d
dx

∫ u(x)

a

f(t) dt = u′(x) · f(u(x)).

Proof. Let F (x) =
∫ x

a

f(t) dt. Then:

∫ u(x)

a

f(t) dt = F (u(x)) = (F ◦ u)(x).

Therefore, we apply the Chain Rule to obtain:

d
dx

(∫ u(x)

a

f(t) dt
)

= d
du

(∫ u

a

f(t) dt
)
· du
dx = u′(x) · f(u(x)).

Example 5.1.4. Find the derivative of:

F (x) =
∫ x3

x2
e−t2 dt.
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Solution. First note that:

F (x) =
∫ x3

x2
e−t2 dt =

∫ x3

0
e−t2 dt−

∫ x2

0
e−t2 dt.

Thus we have:

F ′(x) = d
dx

(∫ x3

0
e−t2 dt

)
− d

dx

(∫ x2

0
e−t2 dt

)
= 3x2e−x6

− 2xe−x4
.

5.2 The Second Fundamental Theorem of Calcu-
lus

Theorem 21. The Second Fundamental Theorem of Calculus. If f is
continuous on [a, b], then:∫ b

a

f(x) dx = G(b)−G(a),

where G is any continuous antiderivative of f on [a, b] such that:

G′ = f.

We write: ∫ b

a

f(x) dx = G(x)
∣∣∣b
a
.

Proof. Second Fundamental Theorem of Calculus. We know that:

G′(x) = f(x).

And by the first fundamental theorem of calculus:

d
dx

(∫ x

a

f(t) dt
)

= f(x).

Hence, both G(x) and
∫ x

a

f(t) dt are antiderivatives of f(x), and they must
differ by a constant on (a, b):

G(x) =
∫ x

a

f(t) dt+ C, ∀x ∈ (a, b),

for some constant C. Next, we have:

G(b)−G(a) =
(∫ b

a

f(t) dt+ C

)
−
(∫ a

a

f(t) dt+ C

)
=
∫ b

a

f(t) dt.
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Example 5.2.1. Evaluate the following:∫ 4

1
x−2 + 3

√
x− 1

√
x
dx.

Solution.∫ 4

1
x−2 + 3

√
x− 1

√
x
dx = −x−1 + 3

(
x

3
2

3
2

)
−
(√

x
1
2

)∣∣∣∣∣
4

1

=
(
−1
4 + 1

)
+ 2(8− 1)− 2(2− 1)

= 1234 .

5.3 Application
Example 5.3.1. Evaluate:

lim
n→∞

π

n

(
sin π

n
+ sin 2π

n
+ · · ·+ sin nπ

n

)
.

Solution. Express the limit as a definite integral:∫ b

a

g(x) dx = lim
n→∞

n∑
k=1

b− a

n
g(x∗

k),

with x∗
k ∈

[
a+ (k−1)(b−a)

n , a+ k(b−a)
n

]
. We get:

∫ 1

0
g(x) dx = lim

n→∞

n∑
k=1

1
n
g(x∗

k),

with x∗
k = k

n . Therefore we rewrite the sum in the question:

π

n

(
sin π

n
+ sin 2π

n
+ · · ·+ nπ

n

)
=

n∑
k=1

π

n
sin kπ

n

=
n∑

k=1

1
n
π sin

((
k

n

)
π

)
.

Equating the expression above with our Riemann sum:
n∑

k=1

1
n
g

(
k

n

)
≡

n∑
k=1

1
n
sin
((

k

n

)
π

)
.

By replacing k
n by x, we take g(x) = π sin(πx) over [0, 1]. Thus we have:

lim
n→∞

n∑
k=1

π

n
sin
(
kπ

n

)
=
∫ 1

0
π sin(πx) dx = π

(
− 1
π
cos (πx)

)∣∣∣∣1
0
= 2.

As required.
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Substitution & Integration
by Parts

6.1 The Substitution Rule
The Substitution Rule is a consequence of the Chain Rule:∫

f(u(x))u′(x) dx︸ ︷︷ ︸
du

=
∫

f(u) du.

The idea behind the substitution rule is to replace a relatively complicated
integral by a simpler integral.

Example 6.1.1. Evaluate the following integral:∫
x4 sin

(
x5) dx.

Solution. Choose u to be some integrand whose derivative also occurs:∫
x4 sin

(
x5) dx = 1

5

∫
sin
(
x5) · 5x4 dx

Substitute u(x) = x5, u′(x) = 5x4:

= 1
5

∫
sin
(
x5)︸ ︷︷ ︸

sin(u)

· 5x4 dx︸ ︷︷ ︸
u′(x) du

= 1
5

∫
sin(u) du

= 1
5((− cos(u)) + C)

= −1
5 cos(x5) + C.

Example 6.1.2. Evaluate the following integral:∫
x

x2 + 1 dx.

42
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Solution. Note that:
d
dx
(
x2 + 1

)
= 2x.

Let u = x2 + 1, u′ = 2x:∫
x

x2 + 1 dx = 1
2

∫ 1
x2 + 1(2x) dx

= 1
2

∫ 1
u
du

= 1
2 ln |u|+ C

= 1
2 ln

(
x2 + 1

)
+ C

= ln
√
x2 + 1 + C.

When using the substitution rule for definite integrals, change the upper
and lower limits of the definite integral together with the substitution u:∫ b

a

f(u(x))u′(x) dx =
∫ u(b)

u(a)
f(u) du.

Example 6.1.3. Evaluate the following definite integral:∫ 8

0

cos
√
x+ 1

√
x+ 1

dx.

Solution. Choose u =
√
x+ 1, du

dx = 1
2
√
x+ 1

, then:

x = 0 =⇒ u = 1, x = 8 =⇒ u = 3.

Thus we have:∫ 8

0

cos
√
x+ 1

√
x+ 1

dx =
∫ 8

0
2
(
cos

√
x+ 1

) 1
2
√
x+ 1

dx

=
∫ 3

1
2 cosudu

= 2 sin u
∣∣∣3
1

= 2(sin(3)− sin(1))

6.2 Integration by Parts
Integration by Parts is a consequence of the Product Rule for differentiation:∫

u(x) v′(x) dx︸ ︷︷ ︸
dv

= u(x)v(x)−
∫

v(x)u′(x) dx︸ ︷︷ ︸
du

.

In short: ∫
udv = uv −

∫
v du.
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Example 6.2.1. Evaluate the following integral:∫
x2 ln x dx.

Solution. Let u = ln x, v′ = x2, then:

u′ = 1
x
, v = x3

3 .

Thus we have: ∫
x2 ln xdx =

(
x3

3 ln x
)
−
∫ 1

x
· x

3

3 dx

= x3

3 ln x−
∫

x2

3 dx

= x3

3 ln x− x3

9 + C.

Example 6.2.2. Evaluate the following integral:∫
(t+ 1)et dt.

Solution. Let u = t+ 1, v′et, then:

u′ = 1, v = et.

Thus we have: ∫
(t+ 1)et dt = (t+ 1)et −

∫
et dt

= (t+ 1)et − et + C

= tet + C.

Example 6.2.3. Evaluate the following integral:∫
tan−1 xdx.

Solution. Let u = tan−1 x, v′ = 1, then:

u′ = 1
1 + x2 , v = x.

Thus we have: ∫
tan−1 xdx = x tan−1 x−

∫
x

1 + x2 dx

We evaluate the integral by substituting w = 1 + x2:

= x tan−1 x−
∫ 1

2 · 1
u
du

= x tan−1 x− 1
2 ln |u|+ C

= x tan−1 x− 1
2 ln(1 + x2) + C.
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6.2.1 The LIPET Rule
When doing integration by parts, certain choices of u work better in general.
This is where the LIPET rule comes in. It is an acronym, where each letter
represents a different type of function:

L = Logarithmic functions
I = Inverse trigonometric functions
P = Polynomial functions
E = Exponential functions
T = Trigonometric functions

This gives a systematic list of functions to try and set equal to u in the integration
by parts formula.

6.3 Reduction Formulas
Consider the integral:

In =
∫

xnex dx.

Where n is a non-negative integer. Then for n ⩾ 1, the formula:

In = xnex − nIn−1,

expresses In in terms of In−1. This is known as a reduction formula for:

In =
∫

xnex dx.

This uses integration by parts recursively to integrate expressions.

Proof. For n ⩾ 1, use integration by parts, with:

u(x) = xn, v′(x) = ex,

so that:
u′(x) = nxn−1, v(x) = ex.

This gives us:

In =
∫

xnex dx

= xnex −
∫

n(xn−1)ex dx

= xnex − n

∫
xn−1ex dx︸ ︷︷ ︸

In−1

= xnex − nIn−1.

Example 6.3.1. Let In =
∫

xnex dx, where n ⩾ 0. Use the reduction formula
to determine a formula for I4.
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Solution. We have:

I4 = x4ex − 4I3
I3 = x3ex − 3I2
I2 = x2ex − 2I1
I1 = xex − I0.

Note that I0 =
∫

ex dx = ex + C. Thus, we obtain:

I4 = x4ex − 4x3ex + 12x2ex − 24xex + 24ex + 24C.



Lecture No. 7

Trigonometric Functions

7.1 Intergrating sinm x cosn x
To integrate integrands of the following form:∫

sinm x cosn xdx,

the following tools are required:∫
cosxdx = sin x+ C∫
sin xdx = − cosx+ C

cos2 x+ sin2 x = 1
cos2 x = 1 + cos 2x

2
sin2 x = 1− cos 2x

2

In the case that there is an odd power of cosx, our aim is to substitute u = sin x,
with u′ = cosx. We take out one cosx term, and replace the remaining even
power of cosx using:

cos2 x = 1− sin2 x.

And then use our substitution u = sin x. We do the converse when we have and
odd power of sin x.
Example 7.1.1. Evaluate the following integral:∫

sin3 x cos8 xdx.

Solution. ∫
sin3 x cos8 x dx =

∫
sin x(sin2 x) cos8 x dx

=
∫

sin x(1− cos2 x) cos8 x dx

47
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Substituting u = cosx, u′ = − sin x:

=
∫

−(1− u2)(u8) du

=
∫

−u8 + u10 du

= −u9

9 + u11

11 + C

= −cos9 x
9 + cos11 x

11 + C.

In the case where both powers of sin x and cosx are even, we use the double
angle formulae to express the integrand as a function of cos 2x.
Example 7.1.2. Evaluate the following integral:∫

sin4 x cos2 xdx.

Solution.∫
sin4 cos2 x dx =

∫
(sin2 x)2 cos2 xdx

=
∫ (1− cos 2x

2

)2(1 + cos 2x
2

)
dx

= 1
8

∫ (
1− 2 cos 2x+ cos2 2x

)
(1 + cos 2x) dx

= 1
8

∫
1− cos 2x− cos2 2x︸ ︷︷ ︸

even power

+ cos3 2x︸ ︷︷ ︸
odd power

dx

= 1
8

∫
1− cos 2x− 1 + cos 4x

2 + cos 2x
(
1− sin2 2x

)
dx

= 1
8

∫ 1
2 − cos 4x

2 − cos 2x sin2 2x dx

= x

16 − sin 4x
64 − sin3 2x

48 + C.

7.2 Intergrating secm x tann x
To intgrate integrands of the following form:∫

secm x tann x dx,

we must first obtain some simple derivatives. First, we must find the integral of
tan x: ∫

tan xdx =
∫ sin x

cosx dx.
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We let u = cosx, therefore u′ = − sin x. Then:∫ sin x
cosx dx = −

∫ 1
u
du

= − ln |u|+ C

= − ln | cosx|+ C

= ln | secx|+ C.

Second, we must find the integral of secx:∫
secxdx =

∫
secx

(
secx+ tan x
secx+ tan x

)
dx

=
∫ sec2 x+ secx tan x

tan x+ secx dx

= ln | tan x+ secx|+ C.

Note. We used the following facts to achieve the result above:

d
dx [tan x+ secx] = sec2 x+ secx tan x,

∫
f ′(x)
f(x) dx = ln |f(x)|+ C.

The rest of the following tools are required for this section:∫
sec2 xdx = tan x+ C∫

secx tan xdx = secx+ C

1 + tan2 x = sec2 x.

In the case where there are odd powers of secx and tan x, our aim is to substitute
u = secx, with u′ = secx tan x. First, we keep one copy of secx tan x separate.
Then we change the remaining tann x term to its various secx terms using:

tan2 x = sec2 x− 1,

so that the expression involves secx only. Finally, we use our substitution
u = secx.
Example 7.2.1. Evaluate the following integral:∫

secx tan3 xdx.

Solution. ∫
secx tan3 xdx =

∫
(secx tan x) tan2 xdx

=
∫
(secx tan x)(sec2 x− 1) dx
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We use the substitution u = secx:

=
∫

u2 − 1 du

= u3

3 − u+ C

= sec3 x
3 − secx+ C.

In the case where there is a even power of secx, our aim is to substitute
u = tan x, with u′ = sec2 x. First we keep one sec2 x term separate. Then, we
change the remaining even power secx term into powers of tan x using:

sec2 x = 1 + tan2 x.

Finally, we use our substitution u = tan x.
Example 7.2.2. Evaluate the following integral:∫

sec4 x tan3 x dx.

Solution. ∫
sec4 x tan3 xdx =

∫
(sec2 x) sec2 x tan3 xdx

=
∫
(sec2 x)(1 + tan2 x) tan3 x dx

We use the substitution u = tan x:

=
∫
(1 + u2)u3 du

=
∫

u3 + u5 du

= u4

4 + u6

6 + C

= tan4 x

4 + tan6 x

6 + C.



Lecture No. 8

Partial Fractions & Inverse
Trigonometric Substitution

8.1 Partial Fractions for Integration of Rational
Functions

Now we consider integrals such as:∫
x3 + 3x2

x2 + 1 dx
∫ 2 + 3x+ x2

x(x2 + 1) dx,

or, in general, integrals of the form:∫
P (x)
Q(x) dx,

where P and Q are polynomials. This is done by partial fractions. First we
check if the integrand is proper, that is, deg(P (x)) < deg(Q(x)). If it is not,
do long division to divide P (x) by Q(x) until the remainder R(x) has a degree
lesser than Q(x): ∫

P (x)
Q(x) dx =

∫
s(x) + R(x)

Q(x) dx.

Then, we factorise the denominator Q(x) as a product of linear and irreducible
quadratic factors. We express the proper rational function R(x)

Q(x) as a sum of
partial fractions of the form:

A

(ax+ b)k or Ax+B

(ax2 + bx+ c)k .

8.1.1 Linear Factors
If the denominator is a product of distinct linear factors, then the corresponding
partial fraction representation for each factor ax+ b is A

ax+b .

Example 8.1.1. Evaluate
∫

x+ 2
x(x− 1)(x+ 1) dx.

51
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Solution. There are three distinct linear factors, the corresponding partial
fractions are:

A

x
,

B

x− 1 ,
C

x+ 1 .

Thus, we shall solve for constants A, B, and C such that:

x+ 2
x(x− 1)(x+ 1) = A

x
+ B

x− 1 + C

x+ 1

= A(x+ 1)(x− 1) +Bx(x+ 1) + Cx(x− 1)
x(x− 1)(x+ 1) .

Comparing coefficients in the numerator, we get the following simultaneous
equations:

A+B + C = 0
B − C = 1

−A = 2

The solutions of which are:

A = −2, B = 3
2 , C = 1

2 .

Thus we have:∫
x+ 2

x(x− 1)(x+ 1) dx =
∫

− 2
x
+ 3/2

x− 1 + 1/2
x+ 1 dx

= −2
∫ 1

x
dx+ 3

2

∫ 1
x− 1 dx+ 1

2

∫ 1
x+ 1 dx

= −2 ln |x|+ 3
2 ln |x− 1|+ 1

2 ln |x+ 1|+ C.

If Q(x) is a product of linear factors, some of which are repeated, say
(ax+ b)k, where k ⩾ 2, then there are k corresponding partial fractions:

A1

ax+ b
,

A2

(ax+ b)2 , . . . ,
Ak−1

(ax+ b)k−1 ,
Ak

(ax+ b)k .

Example 8.1.2. Evaluate
∫

x2

(x− 3)(x+ 2)2 dx.

Solution. For (x− 3), the corresponding partial fraction is A

x− 3 . For (x+ 2)2,
the corresponding partial fractions are:

B

x+ 2 + C

(x+ 2)2 .

Next we find constants A, B, and C such that:

x2

(x− 3)(x+ 2)2 = A

x− 3 + B

x+ 2 + C

(x+ 2)2

= A(x+ 2)2 +B(x− 3)(x+ 2) + C(x− 3)
(x− 3)(x+ 2)2 .
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Comparing coefficients we get:

A+B = 1
4A−B + C = 0

4A− 6B − 3C = 0

The solutions of which are:

A = 9
25 , B = 16

25 , C = −4
5 .

Thus we have:∫
x2

(x− 3)(x+ 2)2 dx = 1
25

∫ 9
x− 3 + 16

x+ 2 − 20
(x+ 2)2 dx

= 9
25

∫ 1
x− 3 dx+ 16

25

∫ 1
x+ 2 dx− 20

25

∫ 1
(x+ 2)2 dx

= 1
25

(
9 ln |x− 3|+ 16 ln |x+ 2|+ 20

x+ 2

)
+ C.

8.1.2 Irreducible Quadratic Factors
The quadratic expression ax2 + bx+ c is said to be irreducible when it cannot
be reduced to a product of linear factors. In this case we have b2 − 4ac < 0. We
can therefore express the quadratic expression in the form (Ax+B)2 +D2, via
completing the square.

f(x) = P (x)
Q(x) .

Suppose Q(x) contains the irreducible quadratic factor ax2 + bx+ c. Then the
partial fraction representation of f(x) will contain the term:

Ax+B

ax2 + bx+ c
.

In this case, we have the useful standard integral:∫ 1
a2 + x2 dx = 1

a
tan−1 x

a
+ C.

Example 8.1.3. Evaluate
∫ 1

x2 + 4x+ 5x dx.
Solution. The quadratic expression x2+4x+5 is irreducible as its discriminant
is less than 0. We first complete the square to obtain:

x2 + 4x+ 5 = (x+ 2)2 + 1.

Thus we have: ∫ 1
x2 + 4x+ 5 dx =

∫ 1
(x+ 2)2 + 1 dx.
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We then use the substitution u(x) = x+ 2, ∴ u′(x) = 1:∫ 1
x2 + 4x+ 5 dx =

∫ 1
(x+ 2)2 + 1 dx

=
∫ 1

u2 + 1 du

= tan−1 u+ C

= tan−1(x+ 2) + C.

Example 8.1.4. Evaluate
∫ 1

4x2 + 4x+ 26 dx.
Solution. Completing the square we have:

4x2 + 4x+ 26 = (2x+ 1)2 + 52.

Therefore we have:∫ 1
4x2 + 4x+ 26 dx =

∫ 1
(2x+ 1)2 + 52 dx

Substituting u(x) = 2x+ 1, ∴ u′(x) = 2:

= 1
2

∫ 1
u2 + 52 du

= 1
2

(
1
5 tan−1

(u
5
))

+ C

= 1
10 tan−1 2x+ 1

5 + C.

Another useful standard integral to use in cases where there are irreducible
quadratic factors: ∫

f ′(x)
f(x) = ln |f(x)|+ C.

Example 8.1.5. Evaluate
∫

x

x2 + 4x+ 13 dx.
Solution. We can see that x2+4x+13 is irreducible, so we complete the square:

x2 + 4x+ 13 = (x+ 2)2 + 9.

Now we express in terms of partial fractions:

x

x2 + 4x+ 13 = A(2x+ 4)
x2 + 4x+ 13︸ ︷︷ ︸

Af′(x)
f(x)

+ B

x2 + 4x+ 13 .

Which gives A = 1
2 and B = −2. Therefore we have:∫

x

x2 + 4x+ 13 dx = 1
2

∫ 2x+ 4
x2 + 4x+ 13 dx− 2

∫ 1
x2 + 4x+ 13 dx

= 1
2 ln |x2 + 4x+ 13| − 2

(
1
3 tan−1 x+ 2

3

)
+ C

= 1
2 ln |x2 + 4x+ 13| − 2

3 tan−1 x+ 2
3 + C.
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Suppose Q(x) contains the repeating irreducible quadratic factors (ax2+ bx+
c)k. Then the partial fraction representation of f(x) will contain the terms:

Aix+Bi

(ax2 + bx+ c)i , ∀i = 1, 2, 3, . . . , k.

Example 8.1.6. Evaluate
∫

x2

x(x2 + 4)3 dx.
Solution. We break the fraction into its partial fractions:

x2

x(x2 + 4)3 = A

x
+ A1x+B1

x2 + 4 + A2x+B2

(x2 + 4)2 + A3x+B3

(x2 + 4)3 .

Then, we proceed like the previous examples to solve for the unknowns.

8.2 Inverse Trigonometric Substitution
8.2.1 Integrands Involving

√
a2 + x2 or a2 + x2

For the inverse substitution, we use x = a tan θ instead of the equivalent θ =
tan−1 x

a . This is usually useful because:

a2 + x2 = a2 + a2 tan2 θ = a2(1 + tan2 θ) = a2 sec2 θ.

And:
dx
dθ = a sec2 θ.

Example 8.2.1. Evaluate
∫ 1

√
a2 + x2

dx, where a > 0.

Solution. Let x = a tan θ so that dx
dθ = a sec2 θ, and

√
a2 + x2 =

√
a2 + a2 tan2 θ = a sec θ.

Thus we have: ∫ 1
√
a2 + x2

dx =
∫ 1

a sec θ (a sec
2 θ) dθ

=
∫

sec θ dθ

= ln | sec θ + tan θ|+ C

= ln
∣∣∣∣∣
√
a2 + x2

a
+ x

a

∣∣∣∣∣+ C.

Example 8.2.2. Evaluate
∫ 1

(4 + x2)2 dx.
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Solution. This type of integral is often seen in the last case of integration by
partial fractions. Let x = 2 tan u. Then dx

du = 2 sec2 u:∫ 1
(4 + x2)2 dx =

∫ 1
(4 sec2 u)2 (2 sec

2 u) du

= 1
8

∫ 1
sec2 u du

= 1
8

∫
cos2 udu

= 1
8

∫ (cos(2u) + 1
2

)
du

= 1
16

(
sin(2u)

2 + u

)
+ C.

From u = tan−1 x
2 , we have:

tan u = x

2 , sin u = x
√
4 + x2

, cosu = 2
√
4 + x2

,

so that:

sin(2u)
2 = sin u cosu

= 2x
4 + x2 .

Therefore we have:∫ 1
(4 + x2)2 dx = 1

16

(
2x

4 + x2 + tan−1
(x
2
))

+ C.

8.2.2 Integrands Involving
√
a2 − x2 or a2 − x2

For the inverse substitution, we use x = a sin θ instead of the equivalent θ =
sin−1 x

a . Thus we have:

a2 − x2 = a2 − a2 sin2 θ = a2(1− sin2 θ) = a2 cos2 θ,

and:
dx
dθ = a cos θ.

Example 8.2.3. Evaluate
∫ 1

x2
√
4− x

dx.

Solution. Let x = 2 sin θ. We have dx
dθ = 2 cos θ and:

4− x2 = 4 cos2 θ.
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Thus we have: ∫ 1
x2

√
4− x2

dx =
∫ 1

4 sin2 θ(2 cos θ)
(2 cos θ) dθ

= 1
4

∫ 1
sin2 θ

dθ

= 1
4

∫
csc2 θ dθ

= −1
4 cot θ + C.

Now, using the identity:
1 + cot2 θ = csc2 θ,

we have:
cot2 θ = csc2 θ − 1 =

(
2
x

)2

− 1 = 4− x2

x2 .

Thus, we have: ∫ 1
x2

√
4− x2

dx = −
√
4− x2

4x + C.

8.2.3 Integrands Involving
√
x2 − a2 or x2 − a2

For the inverse substitution we use x−a sec θ instead of the equivalent θ = sec−1 x
a .

Thus we have:

x2 − a2 = a2 sec2 θ − a2 = a2(sec2 θ − 1) = a2 tan2 θ,

and:
dx
dθ = a sec θ tan θ.

Example 8.2.4. Find
√
x2 − a2

x
dx.

Solution. Let x = a sec θ. We have dx
dθ = a sec θ tan θ and:

√
x2 − a2 = a tan θ.

Thus we have: ∫ √
x2 − a2

x
dx =

∫
a tan θ
a sec θ a sec θ tan θ dθ

=
∫

a tan2 θ dθ

= a

∫
(sec2 θ)− 1 dθ

= a(tan θ − θ) + C

=
√
x2 − a2 − a sec−1

∣∣∣x
a

∣∣∣+ C.



Lecture No. 9

Applications of Integration

9.1 Area Under a Curve
Example 9.1.1. Find the area of the region enclosed by the curve y = x2,
x = 1, x = 3, and y = 0.

1 2 3 4

2

4

6

8

10

12
y = x2

x

y

Solution. For 1 ⩽ x ⩽ 3, the area of a typical strip is:

x2 · δx.

Thus the area of the bounded region is:∫ 3

1
x2 dx =

[
x3

3

]3
1
= 26

3 .

Example 9.1.2. Find the area of the region lying above the line y = 1 and
below the curve y = 5

x2 + 1 .
Solution. To find the intersection points, we must solve:

1 = 5
x2 + 1 ,

which gives x2 + 1 = 5, so x2 = 4 and x = ±2.
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y = 5
x2+1

−3 −2 −1 1 2 3

1

2

3

4

5

x

y

For −2 ⩽ x ⩽ 2, the area of a typical strip is:(
5

x2 + 1 − 1
)
· δx.

Therefore the area of the region is then given by:∫ 2

−2

5
x2 + 1 − 1 dx =

[
(5 tan−1 x)− x

]2
−2

= 5(tan−1 2− tan−1(−2))− 4
= 10 tan−1(2)− 4.

Example 9.1.3. Evaluate the area of the region bounded on the left by y =
√
x,

and on the right by y = 6− x.

y =
√
x

y = 6− x

1 2 3 4 5 6

1

2

3

x

y

For 0 ⩽ y ⩽ 2, note that:

y = 6− x =⇒ x = 6− y,
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and:
y =

√
x =⇒ x = y2.

The area of a typical horizontal strip is given by:

((6− y)− y2) · δy.

Therefore, the area of the bounded region is given by:∫ 2

0
6− y − y2 dy =

[
6y − y2

2 − y3

3

]2
0

= 12− 2− 8
3

= 22
3 .

9.2 Volume of Solid of Revolution
9.2.1 The Disc Method
Solids of revolution are solids obtained by revolving a region about a line. The
volume of a disc is πr2h where r is the radius, and h is the height of the disc. To
find the volume of a solid created by the revolution of an area around an axis,
we substitute r to be the length of a typical horizontal strip, and we substitute
h with our infinitesimal:

V = π

∫ b

a

(f(x))2 dx.

Example 9.2.1. Find the volume of the solid obtained by rotating about the
x-axis the region under the curve y =

√
x from 0 to 1.

y =
√
x

0.5 1 1.5 2

0.5

1

1.5

x

y

Solution. For 0 ⩽ x ⩽ 1, the volume of a typical disc is:

π(
√
x)2 · δx = πx · δx.

Thus the volume of the solid is:∫ 1

0
πxdx = π

[
x2

2

]1
0
= π

2 .
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Example 9.2.2. Find the volume of the solid obtained by rotating the region
bounded by y = x3, y = 8, and x = 0 about the y-axis.

y = x3

y = 8

−1 1 2 3

5

10

15

x

y

Solution. For each y where 0 ⩽ y ⩽ 8, we have the volume of a typical disc is:

π( 3
√
y)2 · δy.

Therefore, the volume of the solid is:

∫ 8

0
π( 3

√
y)2 dy = π

[
3
√
y5

5/3

]8
0

= 96π
5 .

9.2.2 The Cylindrical Shell Method
The volume of a cylindrical with radius r, height h, and thickness t is approxi-
mated by 2πrht as t → 0. So, to find the volume of a solid enclosed within the
x-axis rotated around the y-axis, we substitute h to be the length of a typical
horizontal strip, r to be the distance from the y-axis, x, and t becomes our
infinitesimal:

V = 2π
∫ b

a

xf(x) dx.

Example 9.2.3. Find the volume of the solid obtained by rotating about the
y-axis the region between y = x and y = x2.
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y = x2

y = x

−0.5 0.5 1 1.5

0.5

1

1.5

x

y

Solution. Using the cylindrical shell method, the volume of the solid is:∫ 1

0
2πx(x− x2) dx = 2π

∫ 1

0
x2 − x3 dx

= 2π
[
x3

3 − x4

4

]1
0

= π

6 .

9.3 The Length of an Arc of a Curve
The length of an arc of a curve can be approximated using the Pythagoras
Theorem, where the length of the curve is δs:

δy

δx

δs

∴ δs =
√
(δx)2 + (δy)2

x

y

Therefore, the length of the arc can be approximated to be the summation of δs.
This approximation gets more and more accurate as δx and δy get smaller and



LECTURE NO. 9. APPLICATIONS OF INTEGRATION 63

smaller, so passing these to the limit we have:

L =
∫ b

a

ds

=
∫ b

a

√
(dx)2 + (dy)2

Factoring out dx we have:

=
∫ b

a

√
(dx)2
(dx)2 + (dy)2

(dx)2 dx

=
∫ b

a

√
1 +

(
dy
dx

)2

dx

=
∫ b

a

√
1 + (f ′(x))2 dx.

Likewise, for the curve defined by x = g(y), where y ∈ [c, d], the length of the
arc of the curve is:

L =
∫ d

c

√
1 + (g′(y))2 dy.

Finally, for a parametric curve defined by:

y = y(t), x = x(t), a ⩽ t ⩽ b,

the length of the arc of the curve is:

L =
∫ b

a

√
(x′(t))2 + (y′(t))2 dt.

Example 9.3.1. Find the length of the arc of the curve y = 1 + 6x 3
2 for

0 ⩽ x ⩽ 1.
Solution. The length of the arc of the curve is:

∫ 1

0

√
1 +

(
dy
dx

)2

dx =
∫ 1

0

√
1 +

(
9x 1

2

)2
dx

=
∫ 1

0

√
1 + 81x dx

=
[
(1 + 81x) 3

2

81 · 3
2

]1
0

= 2
243

(
82 3

2 − 1
)
.

9.4 Area of Surface of Revolution
To calculate the surface area of revolution, we must calculate the surface area of
all the thin slices and add them up. The surface area of a thin slice is a frustum
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of a cone. This can be calculated by using our approximation of the length of
an arc:

δA ≈ (2πy)δs = 2πy

√
1 +

(
dy
dx

)2

· δx.

Summing up all these small areas, and making δx smaller and smaller, we arrive
at the following definite integral:

A =
∫ b

a

2πy

√
1 +

(
dy
dx

)2

dx.

Example 9.4.1. Find the surface area generated by revolving the curve y =√
x+ 1 on 1 ⩽ x ⩽ 5, about the x-axis.

Solution. The surface area is the value of the definite integral:

A =
∫ 5

1
2πy

√
1 +

(
dy
dx

)2

dx

=
∫ 5

1
2π

√
x+ 1

√
1 +

(
1

2
√
x+ 1

)2

dx

= 2π
∫ 5

1

√
(x+ 1)

(
1 + 1

4 (x+ 1)

)
dx

= π

∫ 5

1

√
4x+ 5dx

=
[
2π
3 (4x+ 5) 3

2

]5
1

= 2π
3 (125− 27)

= 196π
3 .
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Improper Integrals

10.1 Unbounded Interval
Definition 10. Improper integral over an unbounded interval. If the
integral: ∫ t

a

f(x) dx

exists for every number t ⩾ a, then we define the improper integral over an
unbounded interval as follows:∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx.

It is convergent if the corresponding limit exists, and divergent if the limit
does not exist.

Example 10.1.1. Determine whether
∫ ∞

1

1
x
dx is convergent of divergent.

Solution. Let t ⩾ 1. Then:∫ t

1

1
x
dx = [ln |x|]t1 = ln t,

which exists, and thus we have:∫ ∞

1

1
x
dx = lim

t→∞

∫ t

1

1
x
dx = lim

t→∞
ln t = ∞.

Thus the improper limit is divergent.
Example 10.1.2. Is the improper integral

∫∞
0 xe−x dx convergent? If it is,

what is its value?

65
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Solution. ∫ ∞

0
xe−x dx = lim

t→∞

∫ t

0
xe−x dx

= lim
t→∞

(
[xe−x]t0 −

∫ t

0
−e−x dx

)
= lim

t→∞

(
t

et

)
+ lim

t→∞

∫ t

0
e−x dx

= lim
t→∞

(
t

et

)
+ lim

t→∞
[−e−x]t0

= lim
t→∞

(
1
et

)
− lim

t→∞
(e−t − 1)

= 0− (0− 1)
= 1.

∴ the series is convergent.

Theorem 22. Convergence and divergence of the integral of a function
over all of R. If both of the following integrals:∫ ∞

a

f(x) dx,
∫ a

−∞
f(x) dx,

are convergent for some a ∈ R, then we define:∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞

a

f(x) dx.

The improper integral over R is said to be convergent. If either of the
integrals is divergent, then the improper integral over R is divergent.

10.2 Infinite Discontinuity

Definition 11. Infinite discontinuity at left end-point. If f is continuous
on (a, b] and is discontinuous at a, then:∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx,

if the limit exists. The improper integral is said to be convergent if the
limit exists and divergent if the limit does not exist.

Example 10.2.1. Determine the value of the integral
∫ 5

2

1
√
x− 2

dx.
Solution. The function:

f(x) = 1
√
x− 2

,

has an infinite discontinuity at the left endpoint of (2, 5]. Therefore, the integral
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is improper, thus we evaluate it as follows:∫ 5

2

1
√
x− 2

dx = lim
x→2+

∫ 5

t

1
√
x− 2

dx

= lim
t→2+

[
2
√
x− 2

]5
t

= lim
t→2+

2
(√

3−
√
t− 2

)
= 2

√
3.

Definition 12. Infinite discontinuity at right end-point. If f is continuous
on [a, b) and is discontinuous at b, then:∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx,

if the limit exists. The improper integral is said to be convergent if the
limit exists and divergent if the limit does not exist.

Example 10.2.2. Evaluate
∫ 0

−1

1
x2 dx.

Solution. Since lim
x→0−

1
x2 = ∞, we replace the upper limit 1 by a variable t < 0:

∫ t

−1

1
x2 dx.

Then the improper integral is evaluated as follows:∫ 0

−1

1
x2 dx = lim

t→0−

∫ t

−1

1
x2 dx

= lim
t→0−

[
− 1
x

]t
−1

= lim
t→0−

(
−1
t
− 1
)

= ∞.

Thus, the improper integral diverges to infinity.
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Theorem 23. If f has a discontinuity at c, where a < c < b, and both of
the following integrals are convergent:∫ c

a

f(x) dx,
∫ b

c

f(x) dx,

then we define ∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx,

if either of the summands are divergent, we say that their summation is
divergent.

Example 10.2.3. Evaluate
∫ 2

0

1
√
2x− x2

dx.

Solution. The integrand is continuous on (0, 2). However, note that

lim
x→0+

1
√
2x− x2

= ∞,

and
lim

x→2−
1

√
2x− x2

= ∞.

Thus, we evaluate the given improper integral as follows:∫ 2

0

1
√
2x− x2

dx =
∫ 1

0

1
√
2x− x2

dx+
∫ 2

1

1
√
2x− x2

dx.

We then proceed to evaluate each summand:∫ 1

0

1
√
2x− x2

dx = lim
t→0+

∫ 1

t

1
√
2x− x2

dx

= lim
t→0+

∫ 1

t

1√
1− (x− 1)2

dx

= lim
t→0+

[
− sin−1(x− 1)

]1
t

= lim
t→0+

(
− sin−1(t− 1)

)
= π

2 .

And for the second summand:∫ 2

1

1
√
2x− x2

dx = lim
t→2−

∫ t

1

1
√
2x− x2

dx

= lim
t→2−

∫ t

1

1√
1− (x− 1)2

dx

= lim
t→2−

[
sin−1 (x− 1)

]t
1

= lim
t→2−

(
sin−1(t− 1)

)
= π

2 .



LECTURE NO. 10. IMPROPER INTEGRALS 69

Thus we have: ∫ 2

0

1
√
2x− x2

dx = π

2 + π

2 + π.

And we conclude that the improper integral converges to π.
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Midpoint Rule &
Trapezoidal Rule

Sometimes, we do not know how to find the exact value of a definite inte-
gral. In this case, we have to settle for less by using an approximation. The
approximations will come from the Riemann sums seen in section 4.4:∫ b

a

f(x) dx ≈
n∑

i=1
f(x∗

i )∆x,

where x∗
i is any sample point in the i-th subinterval [xi−1, xi], and xi = a+ i∆x,

and lastly, ∆x = b−a
n . The central idea is that different choices of x∗

i give
different approximations to the definite integral.

11.1 Midpoint Rule
In the case of the midpoint rule, we choose:

x∗
i = 1

2(xi + xi−1).

to be the midpoint of every subinterval. Thus we have:∫ b

a

f(x) dx ≈ Mn = ∆x(f(x1) + f(x2) + · · ·+ f(xn)),

where xi = 1
2 (xi + xi−1).

11.2 Trapezoidal Rule
The intuition behind the trapezoidal rule is to add up the areas of the trapezoids
created by drawing a straight line from the left and right endpoint of each
segment. This is akin to averaging the left and right endpoint approximations:

Tn = Ln +Rn

2 .

70
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Instead of manually computing both right and left endpoint approximations,
we can instead use the following expansion:

Tn = 1
2(Ln +Rn)

= 1
2

(
n∑

i=1
f(xi−1)∆x+

n∑
i=1

f(xi)∆x

)

= ∆x

2

(
n∑

i=1
(f(xi−1) + f(xi))

)

= ∆x

2 (f(x0) + f(x1) + (f(x1) + f(x2)) + · · ·+ (f(xn−1) + f(xn)))

= ∆x

2 (f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn))

Example 11.2.1. Use the trapezoidal rule and the midpoint rule with n = 5 to
approximate the integral: ∫ 2

1

1
x
dx.

Solution. With n = 5, a = 1, b = 2, we have:

∆x = b− a

n
= 2− 1

5 = 0.2.

The five subintervals are therefore given by the points:

x0 = 1, x1 = 1.2, x2 = 1.4, x3 = 1.6, x4 = 1.8, x5 = 2.

The trapezoidal rule gives the following:∫ 2

1

1
x
dx ≈ 0.2

2 (f(1) + 2f(1.2) + 2f(1.4) + 2f(1.6) + 2f(1.8) + f(2))

≈ 0.1
(
1
1 + 2

1.2 + 2
1.4 + 2

1.8 + 1
2

)
≈ 0.695635

The midpoints of the 5 subintervals are:

1.1, 1.3, 1.5, 1.7, 1.9.

The midpoint rule gives the following:∫ 2

1

1
x
dx ≈ 0.2(f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9))

≈ 0.2
(

1
1.1 + 1

1.3 + 1
1.5 + 1

1.7 + 1
1.9

)
≈ 0.691808
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Error Bounds

Approximations such as the midpoint and trapezoidal rule may overestimate or
underestimate the true values of definite integrals. Error bounds give an upper
bound on the absolute error.

Definition 13. Error. The error in using an approximation is the amount
that needs to be added to the approximation to make it exact:

Error = True value−Approximation.

We denote the error of an approximation as Ek where k is the name of the
approximation.
Example 12.0.1. The error of the midpoint approximation is denoted as such:

EM =
∫ b

a

f(x) dx−Mn.

The following theorem gives an upper bound on the error in both the trape-
zoidal and midpoint rules as discussed in lecture 11.

Theorem 24. Error bounds for Trapezoidal and Midpoint Rules. Suppose
|f ′′(x)| ⩽ K for a ⩽ x ⩽ b. Then:

|ET | ⩽
K(b− a)3

12n2 |EM | ⩽ K(b− a)3
24n2 .

Example 12.0.2. Find n such that the midpoint rule approximation Mn

approximates the following integral with an absolute error of at most 0.0001:∫ 4

1

√
x dx.

Solution. Let f(x) =
√
x. First, we must find a number K such that |f ′′(x)| ⩽

K ∀x ∈ [1, 4].

f(x) =
√
x =⇒ f ′(x) = 1

2x
− 1

2 =⇒ |f ′′(x)| = 1
4x

− 3
2 ,

72
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and thus, |f ′′(x)| is decreasing on [1, 4] which implies that its maximum occurs
at the left endpoint x = 1. Therefore, we choose the following:

K = |f ′′(x)| = 1
4 .

By the error bound theorem we have:

|EM | ⩽ K(b− a)3
24n2 = 27

96n2 ⩽ 0.0001.

Thus the absolute error is at most 0.0001 if

n2 ⩾
27× 104

96
= 2812.5

∴ n ⩾
√
2812.5

= 53.033

So we choose n = 54.
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Simpson’s Rule

13.1 General Formula
Simpson’s Rule is a weighted average of the Trapezoidal and Midpoint Rules. It
assumes that n is even and that:

Sn = 1
3Tn/2 +

2
3Mn/2.

To define both Tn/2 and Mn/2 we consider again dividing the interval [a, b] into
n subintervals:

[x0, x1], [x1, x2], . . . , [xn−1, xn].

Then, we consider the following subintervals:

[x0, x2], [x2, x4], . . . , [xn−2, xn].

The endpoints of these subintervals x0, x2, . . . , xn−2, xn are used to compute
Tn/2:

Tn/2 = 1
2
b− a

n/2 (f(x0) + 2f(x2) + 2f(x4) + · · ·+ 2f(xn−2) + f(xn))

= ∆x(f(x0) + 2f(x2) + 2f(x4) + · · ·+ 2f(xn−2) + f(xn))

The midpoints of the subintervals x1, x3, . . . , xn−3, xn−1 are used to compute
Mn/2:

Mn/2 = b− a

n/2 (f(x1) + f(x3) + · · ·+ f(xn−3) + f(xn−1))

= ∆x(2f(x1) + 2f(x3) + · · ·+ 2f(xn−3) + 2f(xn−1))

Combining the two we get:

Sn = 1
3∆x(f(x0) + 4f(x1) + 2f(x2) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)).

Example 13.1.1. Use Simpson’s Rule with n = 8 to find
∫ 4

2

√
1 + x3 dx.

74
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Solution. We have:
∆x = b− a

n
= 4− 2

8 = 0.25,

and therefore we have:
x0 x1 x2 x3 x4 x5 x6 x7 x8
2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

Now, let:
f(x) =

√
1 + x3.

Thus:

S8 = 1
3(0.25)(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4)
+ 4f(x5) + 2f(x6) + 4f(x7) + f(x8))

= 1
12
(√

1 + 23 + 4
√
1 + 2.253 + 2

√
1 + 2.53 + 4

√
1 + 2.753

+ 2
√
1 + 33 + 4

√
1 + 3.253 + 2

√
1 + 3.53

+ 4
√
1 + 3.753 +

√
1 + 43

)
≈ 1

12(3 + 4(3.52003) + 2(4.07738) + 4(4.66871) + 2(5.2915)
+ 4(5.94375) + 2(6.62382) + 4(7.33037) + 8.06226)

≈ 10.74159.

As required.

13.2 Error Bounds
Error bounds for the trapezoidal and midpoint rule rely on finding the second
derivative of the integrand, however, error bounds for Simpson’s rule depends
on the fourth derivative of the function.

Theorem 25. Error Bound for Simpson’s Rule. Suppose that |f (4)(x)| ⩽ K
for all a ⩽ x ⩽ b. If ES is the error involved in using the Simpson’s Rule,
then:

|ES | ⩽
K(b− a)5
180n4 .

Example 13.2.1. Find n such that Sn has an absolute error of at most 10−6

for the following:

Sn ≈
∫ 3

1

1
x
dx.

Solution. Let f(x) = 1
x
, then:

f (4)(x) = 24x−5,

which is decreasing, so its maximum on [1, 3] is f (4)(1) = 24. Thus we choose
K = 24, and by using the error bound theorem we see that:

|ES | ⩽
24(3− 1)5
180n4 = 64

15n4 .
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To ensure that the error is at most 10−6, we choose n so that:

|ES | ⩽
64

15n4 ⩽ 10−6.

Which is true iff:

n4 ⩾ 106
(
64
15

)
∴ n ⩾

(
106

(
64
15

)) 1
4

≈ 45.45.

Thus, we should take n = 46 which works out perfectly since our choice for n
has to be even for Simpson’s Rule.



Lecture No. 14

The Integral Test

14.1 Intuition Behind Integral Test
The integral test is a type of convergence test. A convergence test is a test we
can attempt to apply on a series to better determine its convergence. We see
how the test works using an example.
Example 14.1.1. Consider the series:

∞∑
n=1

1
n2 .

It is known that the improper integral
∫ ∞

1

1
x2 dx is convergent since:

∫ ∞

1

1
x2 dx = lim

t→∞

[
x−1

−1

]t
1
= 1.

Yet, we note that:

1
22 + 1

32 + · · ·+ 1
n2 ⩽

∫ ∞

1

1
x2 dx = 1.

As seen in the following diagram:

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2
y = 1

x2

x

y

77
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Therefore, the k-th partial sums of the series are bounded:

sk = 1
12 + 1

22 + · · ·+ 1
k2

⩽ 1 +
∫ ∞

1

1
x2 dx = 1 + 1 = 2.

On top of that, the sequence of partial sums {sk} is increasing, since:

sk+1 = sk + 1
(k + 1)2 > sk.

Hence, by the monotonic convergence theorem, the sequence {sk} is con-
vergent, and thus the series is convergent.

Theorem 26. The Integral Test. Suppose f is a continuous, positive,
decreasing function on [1,∞), and let an = f(n). The following implications
hold true: ∫ ∞

1
f(x) dx is convergent =⇒

∞∑
n=1

an is convergent.

∫ ∞

1
f(x) dx is divergent =⇒

∞∑
n=1

an is divergent.

Note. When using the integral test, it is not necessary that the series or the
integral starts at n = 1. It is also not necessary that f is always decreasing. It
is necessary for f to be ultimately decreasing, that is, f is decreasing ∀x ⩾ N ,
where N ∈ Z.
Example 14.1.2. Test the series

∞∑
n=1

1
1 + n2 for convergence.

Solution. The function f(x) = 1
1 + x2 is continuous, positive, and decreasing

on [1,∞). ∴ we can use the integral test:∫ ∞

1

1
1 + x2 dx = lim

t→∞

∫ t

1

1
1 + x2 dx

= lim
t→∞

[
tan−1 x

]t
1

= lim
t→∞

(
tan−1 t− π

4
)

= π

2 − π

4 = π

4 .

Thus, by the integral test, the series
∞∑

n=1

1
1 + n2 is convergent.

14.2 p-series
An important class of series consists of p-series. The convergence of a p-series
can be determined using the integral test.



LECTURE NO. 14. THE INTEGRAL TEST 79

Theorem 27. p-series. A p-series is a series of the form:
∞∑

n=1

1
np

,

where p is some fixed real number. It is convergent when p > 1, and
divergent when p ⩽ 1.

Proof. We consider different cases depending on p. Say:

p < 0.

Then the term 1
np

can be arbitrarily large for sufficiently large n, that is:

lim
n→∞

1
np

= ∞,

so, by the n-th term divergence test, the series is divergent. Now, consider the
case where:

p = 0.

In this case, the term 1
np

= 1 for all values of n, and so by the n-th term
divergence test, the series is divergent. For the case where:

p = 1,

we have 1
np

= 1
n
. Therefore, the p-series becomes the harmonic series which is

known to be divergent. Finally, for the case where:

p ̸= 1 ∧ p > 0,

we have: ∫ ∞

1

1
xp

dx = lim
t→∞

∫ t

1
x−p dx

= lim
t→∞

[
x−p+1

−p+ 1

]t
1

= lim
t→∞

1
1− p

(
t1−p − 1

)
Now, consider the case where p > 1, then p− 1 > 0, and so t1−p = 1

tp−1 → 0 as
t → ∞. Therefore:∫ ∞

1

1
xp

dx = lim
t→∞

1
1− p

(
t1−p − 1

)
= 1

1− p
(0− 1) = 1

p− 1 .

By the integral test, the corresponding p-series is convergent. Now, consider the
case where 0 < p < 1, then 1− p > 0, and so t1−p → ∞ as t → ∞. Therefore,∫ ∞

1

1
xp

dx = lim
t→∞

1
1− p

(
t1−p − 1

)
= ∞.

By the integral test, the corresponding p-series is divergent.
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Example 14.2.1. Determine whether
∞∑

n=1

lnn
n

is convergent.

Solution. Consider the function:

f(x) = ln x
x

.

Clearly, f(x) is positive and continuous for all x > 1. To show that f is
decreasing, we compute the derivative:

f ′(x) =
( 1
x

)
x− ln x
x2 = 1− ln x

x2 .

Thus, f ′(x) < 0 for all ln x > 1, therefore f is decreasing for all x > e and x ⩾ 3.
In view of the integral test, we check the improper integral:∫ ∞

3

ln x
x

dx = lim
t→∞

∫ t

3

ln x
x

dx

= lim
t→∞

[
1
2(ln x)

2
]t
3

= lim
t→∞

(
(ln t)2

2 − 1
2(ln 3)

2
)

= ∞.

By the integral test, the series is divergent.



Lecture No. 15

The Comparison Tests

15.1 The Series Comparison Test
If we have a series whose terms are smaller than those of a known convergent
series, then our series is also convergent. If we have a series whose terms are
bigger than those of a known divergent series, then our series is also divergent.

Theorem 28. The Series Comparison Test. Suppose that
∑

an and
∑

bn
are series with positive terms. Then the following implications hold true:∑

bn is convergent ∧ an ⩽ bn ∀n =⇒
∑

an is convergent∑
bn diverges to ∞ ∧ an ⩾ bn ∀n =⇒

∑
an diverges to ∞

Proof. Let:

sk =
k∑

n=1
an, tk =

k∑
n=1

bn,

denote the k-th partial sums of the series. Now, suppose
∑

bn is convergent,
and an ⩽ bn ∀n. The sequence {sk} and {tk} are increasing, since each term in
an and bn are positive. Since an ⩽ bn ∀n, we have:

sk =
k∑

n=1
an ⩽

k∑
n=1

bn = tk.

But
∑

bn is convergent, that is, limk→∞ tk = t for some t ∈ R. This implies
that tk ⩽ t for all k since {tk} is increasing. So:

sk ⩽ tk ⩽ t.

We have shown that {sk} is increasing and bounded. By the monotonic conver-
gence theorem, limk→∞ sk exists, that is:

∞∑
n=1

an = lim
k→∞

sk = s,
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for some s ∈ R. Therefore the series is convergent. Now, suppose
∑

bn diverges
to ∞, and an ⩾ bn ∀n. Since an ⩾ bn ∀n, we have:

sk ⩾ tk.

Since limk→∞ tk = ∞, we deduce that:
lim
k→∞

sk = ∞.

Therefore, the series
∑

an also diverges to ∞.

Example 15.1.1. Determine whether the series
∞∑

n=1

100
2n2 + 5n+ 4 is convergent.

Solution. Set an = 100
2n2 + 5n+ 4 . Note that:

an = 100
2n2 + 5n+ 4 <

100
2n2 = 50

n2 .

Set bn = 50
n2 . We know that:

∞∑
n=1

bn =
∞∑

n=1

50
n2 = 50

∞∑
n=1

1
n2 ,

which is convergent since
∞∑

n=1

1
n2 is a p-series with p > 1. Therefore, by the series

comparison test, the series is convergent.

15.2 The Limit Comparison Test
Sometimes, the following limit version of the series comparison test is easier to
apply.

Theorem 29. The Limit Comparison Test. Suppose that
∑

an and
∑

bn
are series with positive terms. Then the following implications hold true:

lim
n→∞

an
bn

= c > 0 =⇒
(
both seriesconverge

)
⊻
( both series
diverge to ∞

)
lim
n→∞

an
bn

= 0 ∧
∑

bn converges =⇒
∑

an converges

lim
n→∞

an
bn

= ∞∧
∑

bn diverges =⇒
∑

an diverges

Proof. We first prove the first implication. Let m and M be positive numbers
such that m < c < M . Since an

bn
converges to c, for a large enough n, we would

have:
m <

an
bn

< M, ∀n > N.

Thus,
mbn < an < Mbn, ∀n > N.

Now, if
∑

bn converges, then so does
∑

Mbn. Therefore, by the series comparison
test,

∑
an is convergent since an < Mbn.
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Then, if
∑

an converges, then by the series comparison test,
∑

mbn converges
since mbn < an. This implies that

∑
bn also converges. Thus we have proved

the following: ∑
an converges ⇐⇒

∑
bn converges.

Now, if
∑

bn diverges to ∞, then so does
∑

mbn. Then, by the series comparison
test,

∑
an diverges to ∞ since an > mbn.

Then, if
∑

an diverges to ∞, then by the series comparison test,
∑

Mbn
diverges to ∞ since Mbn > an. This implies that

∑
bn also diverges to ∞. Thus

we have also proved the following:∑
an diverges to ∞ ⇐⇒

∑
bn diverges to ∞.

For the second implication in the theorem, we have:

lim
n→∞

an
bn

= 0,

so, we let M be a positive number. Thus, there exists a number N such that:

0 <
an
bn

< M, ∀n > N.

Therefore, we have:
0 < an < Mbn, ∀n > N.

Since
∑

bn converges, then so does
∑

Mbn. So, by the series comparison test,∑
an is convergent.

For the last implication, we have:

lim
n→∞

an
bn

= ∞,

so, we let M be a positive number. Thus there exists a number N such that:

M <
an
bn

< ∞, ∀n > N.

Therefore, we have:
Mbn < an < ∞, ∀n > N.

Since
∑

bn diverges to ∞, then so does
∑

Mbn. So, by the series comparison
test,

∑
an diverges to ∞.

Example 15.2.1. Test the series
∞∑

n=1

1
2n − 1 for convergence.

Solution. We use the limit comparison test with:

an = 1
2n − 1 , bn = 1

2n .
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Thus we have:

lim
n→∞

an
bn

= lim
n→∞

1/(2n − 1)
1/2n

= lim
n→∞

2n
2n − 1

= lim
n→∞

1
1− 1/2n = 1 > 0.

Since bn is convergent, the series an is also convergent by the limit comparison
test.
Example 15.2.2. Determine if the series

∞∑
n=1

2n2 + 3n
√
5 + n5

is convergent.

Solution. The dominant part of the numerator is 2n2, and the dominant part
of the denominator is

√
n5 = n

5
2 . This suggests taking:

an = 2n2 + 3n
√
5 + n5

, bn = 2n2

n
5
2

= 2
√
n
.

Thus we have:

lim
n→∞

an
bn

= lim
n→∞

2n2 + 3n
√
5 + n5

· n
1
2

2

= lim
n→∞

2n 5
2 + 3n 3

2

2
√
5 + n5

= lim
n→∞

2 + 3
n

2
√

5
n5 + 1

= 2 + 0
2
√
0 + 1

= 1.

Since the sum of bn is divergent(p-series with p = 1
2 ), the limit comparison test

tells us that an is also divergent.



Lecture No. 16

Absolute & Conditional
Convergence

16.1 Absolute Convergence

Definition 14. Absolute Convergence. A series
∑

an is absolutely con-
vergent if the series: ∑

|an|

converges.

Example 16.1.1. The series

1
12 − 1

22 + 1
32 − 1

42 + · · ·

is absolutely convergent because the corresponding series with absolute values is
the convergent p-series:

1
12 + 1

22 + 1
32 + 1

42 + · · ·

The following result states that if the series of absolute values converges,
then the original series converges.

Theorem 30. Absolute Convergence implies Convergence. If
∑

an is
absolutely convergent, then

∑
an converges.

Proof. We have:
0 ⩽ an + |an| ⩽ 2|an|.

Thus,
∑

(an + |an|) is a series with positive terms (dropping all 0’s).

Now, suppose that
∑

an is absolutely convergent, that is,
∑

|an| converges.
Then,

∑
2|an| also converges. Then, by the series comparison test, we can say

that
∑

(an + |an|) is convergent.
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Our original series is the difference of two convergent series and hence it
converges:∑

an =
∑

((an + |an|)− |an|) =
∑

(an + |an|)︸ ︷︷ ︸
convergent

−
∑

|an|︸ ︷︷ ︸
convergent

.

Example 16.1.2. Determine whether the series:
∞∑

n=1

cosn
n2 = cos 1

12 + cos 2
22 + cos 3

32 + · · ·

is convergent or divergent.
Solution. The series has both positive and negative terms, but it is not alter-
nating: The first term is positive, yet the next three are negative. The series of
absolute values is:

∞∑
n=1

∣∣∣cosn
n2

∣∣∣ = ∞∑
n=1

|cosn|
n2 .

Since |cosn| ⩽ 1 for all n, we have:

|cosn|
n2 ⩽

1
n2 .

We know that
∞∑

n=1

1
n2 is convergent. Therefore, by the series comparison test:

∞∑
n=1

|cosn|
n2

is also convergent. This implies that the series in question is absolutely convergent,
and therefore is convergent itself.

Example 16.1.3. Does the series
∞∑

n=2

(−1)n
n lnn converge absolutely?

Solution. We apply the integral test to the series of absolute values:
∞∑

n=2

∣∣∣∣ (−1)n
n lnn

∣∣∣∣ = ∞∑
n=2

1
n lnn.

Using the substitution u = ln x, du = x−1 dx, we have:∫ ∞

2

1
x ln x dx =

∫ ∞

ln 2

1
u
du

= lim
t→∞

∫ t

ln 2

1
u
du

= lim
t→∞

(ln t− ln(ln 2))

= ∞.

Therefore,
∞∑

n=2

1
n lnn diverges, so

∞∑
n=2

(−1)n
n lnn is not absolutely convergent.
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16.2 Conditional Convergence

Definition 15. Conditional Convergence. A series
∑

an is called condi-
tionally convergent if it converges but

∑
|an| diverges.

The following theorem provides a test for conditional convergence if a series
is not absolutely convergent.

Theorem 31. Alternating Series Test. Let {an} be a decreasing positive
sequence that converges to 0:

a1 ⩾ a2 ⩾ a3 ⩾ a4 ⩾ · · · ⩾ 0, lim
n→∞

an = 0.

Then the following alternating series converges:
∞∑

n=1
(−1)n−1an = a1 − a2 + a3 − a4 + · · · .

Note. This alternating series starts with a positive term and then alter-
nates. This result also applies if it starts with a negative term, which then
alternates.

Note. The proof of this theorem is beyond the scope for this course.

Example 16.2.1. Show that S =
∞∑

n=1

(−1)n−1
√
n

is conditionally convergent.

Solution. The terms:
an = 1

√
n
,

form a decreasing sequence that converges to 0. The alternating series test implies
that S is convergent. However, S is only conditionally convergent because the
series of absolute values:

∞∑
n=1

∣∣∣∣ (−1)n−1
√
n

∣∣∣∣ = ∞∑
n=1

1
√
n

is a divergent p-series.

Example 16.2.2. Is the series S =
∞∑

n=1
(−1)n+1 n2

n3 + 1 convergent?

Solution. Let:
an = n2

n3 + 1 .

In view of the alternating series test, we want to show that {an}∞n=1 is decreasing
and an → 0. Let’s consider the related function f(x), where f(n) = an. Its
derivative is:

f(x) = x2

x3 + 1
differentiation−−−−−−−−−→ f ′(x) = 2x(x3 + 1)− x2(3x2)

(x3 + 1)2 = x(2− x3)
(x3 + 1)2 .

Since we are considering only positive x, we see that:

f ′(x) < 0 ⇐⇒ 2− x3 < 0 ⇐⇒ x > 2 1
3 .



LECTURE NO. 16. ABSOLUTE & CONDITIONAL CONVERGENCE 88

Thus, f is strictly decreasing on the interval (2 1
3 ,∞). This means that f(n+1) <

f(n) and therefore an+1 < an for all n ⩾ 2. On the other hand, it is clear that:

a2 = 22
23 + 1 = 4

9 <
1
2 = a1.

So the sequence {an}∞n=1 is decreasing. The limit of {an} is readily verified:

lim
n→∞

an = lim
n→∞

n2

n3 + 1 = lim
n→∞

1
n

1 + 1
n3

= 0.

Hence, the given series is convergent by the alternating series test.



Lecture No. 17

The Ratio & Root Tests

The convergence tests outlined so far cannot be easily applied to series containing
factorial terms or n-th powers. For this, we will need the following tests.

17.1 The Ratio Test
Theorem 32. Ratio Test. Let {an} be a sequence and assume that the
following limit exists:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Then the following implications hold true:

ρ < 1 =⇒
∑

an converges absolutely

ρ > 1 ∨ ρ = ∞ =⇒
∑

an diverges
ρ = 1 =⇒ Ratio test is inconclusive

Proof. First, we consider the case where ρ < 1. We choose a number r such
that:

ρ < r < 1.

Since
∣∣∣∣an+1

an

∣∣∣∣ converges to ρ, there exists a number N such that:∣∣∣∣an+1

an

∣∣∣∣ < r, ∀n > N.

That is:
|an+1| < r|an|, ∀n > N.

In particular, we have:
|aN+1| < r|aN |
|aN+2| < r|aN+1| < r2|aN |

...
|aN+k| < rk|aN |.
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Therefore,
∞∑

n=N

|an| =
∞∑
k=0

|aN+k|

⩽
∞∑
k=0

rk|aN |

= |aN |
∞∑
k=0

rk.

The geometric series on the right hand side converges because 0 < r < 1, and
so the left hand side converges by the comparison test. Thus the series

∑
an

converges absolutely.

Secondly, we consider the case where ρ > 1 ∨ ρ = ∞. We choose a number r
such that 1 < r < ρ. Arguing as before with inequalities reversed, we conclude
that there exists an integer N such that:

|aN+k| ⩾ rk|aN |, ∀k ⩾ 0.

Since rk tends to ∞, we see that the term aN+k does not tend to 0. Thus,
by the n-th term test for divergence, we can conclude that the series

∑
an is

divergent.

Example 17.1.1. Consider the series
∞∑

n=1
n2 and

∞∑
n=1

n−2. Find ρ for each.

Solution. Let an = n2. Then:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim

n→∞

(n+ 1)2
n2

= lim
n→∞

n2 + 2n+ 1
n2

= lim
n→∞

(
1 + 2

n
+ 1

n2

)
= 1.

On the other hand, let bn = n−2. Then:

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣
= lim

n→∞

n2

(n+ 1)2

= lim
n→∞

n2

n2 + 2n+ 1
= lim

n→∞

1
1 + 2

n + 1
n2

= 1.
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Thus, ρ = 1 in both cases. However, one series converges and one diverges,
therefore, the ratio test is inconclusive when ρ = 1.

Example 17.1.2. Using the ratio test, show that
∞∑

n=1

1
n! converges.

Solution. We compute the limit ρ. Let an = 1
n! . Then:

an+1

an
= 1

(n+ 1)! ·
n!
1 = 1

n+ 1 .

Thus we have:
ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1
n+ 1 = 0.

Since ρ < 1, the series converges.

Example 17.1.3. Apply the ratio test to determine if
∞∑

n=1

n2

2n converges.

Solution. Let an = n2

2n . We have:

an+1

an
= (n+ 1)2

2n+1 · 2
n

n2

= 1
2

(
n2 + 2n+ 1

n2

)
= 1

2

(
1 + 2

n
+ 1

n2

)
∴ ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1
2

(
1 + 2

n
+ 1

n2

)
= 1

2 .

Since ρ < 1, the series converges.

17.2 The Root Test
For some series, it is more convenient to use the following root test, based on
the limit of the n-th roots n

√
an rather than the ratio of consecutive terms.

Definition 16. Root Test. Let {an} be a sequence and assume that the
following limit exists:

L = lim
n→∞

n
√
|an|.

Then the following implications hold true:

L < 1 =⇒
∑

an converges absolutely

L > 1 ∨ L = ∞ =⇒
∑

an diverges
L = 1 =⇒ Root test is inconclusive

Proof. First, we consider the case where L < 1. We choose a number r such
that:

L < r < 1.
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Now, because we have chosen r such that L < r, there is some N such that if
n ⩾ N we will have:

n
√
|an| < r =⇒ |an| < rn.

Now, the series:
∞∑

n=1
rn

is a geometric series and because 0 < r < 1 we in fact know that it is a convergent
series. Thus, by the comparison test we conclude that:

∞∑
n=N

|an|

is convergent. However, since:

∞∑
n=1

|an| =
N−1∑
n=1

|an|+
∞∑

n=N

|an|,

we know that the left hand side is convergent since it is the sum of two convergent
sums.

Next, we assume that L > 1, and because of that, we know that there must be
some N such that if n ⩾ N we have:

n
√
|an| > 1 =⇒ |an| > 1n = 1.

However, if |an| > 1 for all n ⩾ N then we know that:

lim
n→∞

|an| ≠ 0 =⇒ lim
n→∞

an ̸= 0.

Therefore, the sum is divergent.

Example 17.2.1. Determine whether
∞∑

n=1

(
n

2n+ 3

)n

converges.

Solution. Let an =
(

n

2n+ 3

)n

. Then:

L = lim
n→∞

n
√
|an| = lim

n→∞

n

2n+ 3 = 1
2 .

Since L < 1, the series converges.
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Power Series

18.1 The Power Series
A differentiable function can be expressed as an ‘infinite polynomial’ called a
power series.

Definition 17. Power Series. A power series in x is a series of the form:
∞∑

n=0
cnx

n = c0 + c1x+ c2x
2 + c3x

3 + · · · ,

where x is a variable, and the cn’s are constants called the coefficients of
the series.

Note. A power series resembles a polynomial in x. The only difference is that
f has infinitely many terms, while a polynomial has only finitely many terms.
Example 18.1.1. The geometric series:

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · ,

is an example of a power series which converges when −1 < x < 1 and diverges
when |x| ⩾ 1.

Definition 18. Power series at x = a. More generally, a series of the form:
∞∑

n=0
cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

is called a power series in (x− a) or a power series at x = a.

Example 18.1.2. For what values of x is the series
∞∑

n=0
n!xn convergent?

Solution. Clearly, the series converges when x = 0. Suppose x ̸= 0. We use the
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ratio test with an = n!xn:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)!xn+1

n!xn

∣∣∣∣ = lim
n→∞

(n+ 1)|x| = ∞.

By the ratio test, the series diverges whenever x ≠ 0. So the series converges
only when x = 0.

18.2 Radius of Convergence

Theorem 33. Radius of Convergence. For any given power series:
∞∑

n=0
cn(x− a)n,

there are only three possibilities:

1. The series converges only when x = a.

2. The series converges for all x.

3. There is a positive number R such that the series converges if |x−a| <
R, and diverges if |x− a| > R.

The number R is called the radius of convergence of the power series.
In the first case, R = 0, and in the second case, R = ∞.

Example 18.2.1. Find the radius of convergence and the interval of convergence
of the series:

∞∑
n=0

(−3)nxn

√
n+ 1

.

Solution. Let an = (−3)nxn

√
n+ 1

. Then:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−3)n+1xn+1
√
n+ 2

·
√
n+ 1

(−3)nxn

∣∣∣∣
= lim

n→∞

∣∣∣∣∣(−3x)
√

n+ 1
n+ 2

∣∣∣∣∣
= lim

n→∞
3

√
1 + 1

n

1 + 2
n

|x|

∴ ρ = 3|x|.

By the ratio test, we see that the series converges if 3|x| < 1 and diverges if
3|x| > 1. This means that the radius of convergence, R = 1

3 . However, the ratio
test provides no information regarding the cases where 3|x| = 1, that is, when
x = ± 1

3 . We consider these cases separately.
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If x = − 1
3 , then the series becomes:

∞∑
n=0

(−3)nxn

√
n+ 1

=
∞∑

n=0

1
√
n+ 1

,

which diverges because:

1
√
n+ 1

⩾
1

√
2n

= 1
√
2
· 1
√
n
,

and since 1
√
n

diverges, by the comparison test, the series also diverges.

If x = 1
3 , then the series becomes:

∞∑
n=0

(−3)nxn

√
n+ 1

=
∞∑

n=0

(−1)n
√
n+ 1

,

which converges by the alternating series test. In summary, the interval of
convergence of the given power series is (− 1

3 ,
1
3 ].



Lecture No. 19

Representation of Functions
as Power Series

19.1 Fitting to a Geometric Series
Consider the geometric series:

1
1− x

= 1 + x+ x2 + x3 + · · · =
∞∑

n=0
xn.

We know that this series is convergent for all |x| < 1. We can use this series to
express a given function as a sum of a power series.
Example 19.1.1. Express the function:

f(x) = 1
1 + x2 ,

as the sum of a power series in x and find the interval of convergence.
Solution. Replace x by −x2 in the standard geometric series to get:

1
1 + x2 = 1

1− (−x2)

=
∞∑

n=0
(−x2)n

= 1− x2 + x4 − x6 + x8 − · · ·

Since this is a geometric series, it converges when:

|−x2| < 1 ⇐⇒ |x2| < 1 ⇐⇒ |x| < 1.

Therefore, the interval of convergence is (−1, 1).
Example 19.1.2. Find a power series representation of:

f(x) = 1
3x+ 1 ,

at x = 1, and determine its interval of convergence.
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Solution. Again, we use the standard geometric series:
1

3x+ 1 = 1
3(x− 1) + 4

= 1
4
(
1−

(
− 3(x−1)

4

))
= 1

4

∞∑
n=0

(
−3(x− 1)

4

)n

=
∞∑

n=0

(−1)n3n
4n+1 (x− 1)n.

The series converges when:∣∣∣∣−3(x− 1)
4

∣∣∣∣ < 1 ⇐⇒ |x− 1| < 4
3 .

Thus the interval of convergence is
(
− 1

3 ,
7
3
)
.

Example 19.1.3. Find a power series representation of x3

x+ 2 in x.

Solution. We first find the power series representation of 1
x+ 2 using the

standard geometric series:
1

x+ 2 = 1
2 · 1

1− (−x
2 )

= 1
2

∞∑
n=0

(
−x

2
)n

=
∞∑

n=0

(−1)n
2n+1 xn.

Multiplying by x3:

x3

x+ 2 = x3 · 1
x+ 2

= x3
∞∑

n=0

(−1)n
2n+1 xn

=
∞∑

n=0

(−1)n
2n+1 xn+3

=
∞∑

n=3

(−1)n−1

2n−2 xn (after reindexing)

= (−4)
∞∑

n=3

(
−x

2
)n

.

Which converges iff: ∣∣∣−x

2

∣∣∣ < 1 ⇐⇒ |x| < 2.

Thus the interval of convergence is (−2, 2).
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19.2 Integration & Differentiation of Power Se-
ries

Theorem 34. Term-by-term Differentiation & Integration of Power Series.
Suppose that the power series:

f(x) =
∞∑

n=0
cn(x− a)n

has a radius of convergence R > 0. Then f(x) is differentiable on the interval
(a−R, a+R), and its derivative and anti derivative may be computed term
by term. More precisely,

f ′(x) =
∞∑

n=1
ncn(x− a)n−1

∫
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1

Moreover, the series above both have the same radius of convergence R.

Example 19.2.1. Prove that:
1

(1− x)2 = 1 + 2x+ 3x2 + 4x3 + 5x4 + · · ·

for −1 < x < 1.
Solution. Note that:

d
dx

[
1

1− x

]
= 1

(1− x)2 .

Thus, we obtain the result by differentiating the geometric series term by term
for |x| < 1:

d
dx

[
1

1− x

]
= d

dx
(
1 + x+ x2 + x3 + · · ·

)
1

(1− x)2 = 1 + 2x+ 3x2 + 4x3 + · · ·

The above expansion is valid for |x| < 1.
Example 19.2.2. Prove that for −1 < x < 1:

tan−1 x =
∞∑

n=0

(−1)nx2n+1

2n+ 1 = x− x3

3 + x5

5 − x7

7 + · · ·

Solution. First, we substitute −x2 into x in the geometric series to obtain:
1

1 + x2 = 1− x2 + x4 − x6 + · · · .

Since the geometric series has a radius of convergence R = 1, this expansion is
valid for

∣∣x2
∣∣ < 1, that is |x| < 1. Now, recall that:

tan−1 x =
∫ 1

1 + x2 dx.
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Thus, we integrate this series term by term to get:

tan−1 x =
∫ 1

1 + x2 dx

=
∫ (

1− x2 + x4 − x6 + · · ·
)
dx

= C + x− x3

3 + x5

5 − x7

7 + · · ·

Where C is a constant. When we set x = 0, we obtain tan−1 0 = 0 = C. This
proves the result as required.



Lecture No. 20

Taylor & Maclaurin Series

The Taylor & Maclaurin Series are general methods for finding power series
representations of functions.

20.1 Taylor & Maclaurin Series
Suppose that f(x) has a power series expansion centred at x = a that is valid for
all x in an interval (a−R, a+R) with R > 0. If such a power series expansion
did exist, it would have the following form:

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

where |x − a| < R. Then, our goal is simply to determine the coefficients
c0, c1, c2, . . .

• To find c0: Substitute x = a into the power series, getting:

c0 = f(a).

• To find c1: Differentiate the power series term by term:

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + · · ·

Then, substitute x = a into the above to give:

c1 = f ′(a).

• To find c2: Differentiate the power series term by term another time:

f (2)(x) = 2c2 + 3 · 2c3(x− a) + 4 · 3c4(x− a)2 + · · ·

Substitute x = a into the above getting:

c2 = 1
2f

(2)(a) = 1
2!f

(2)(a).

• To find c3: Differentiate the power series term by term another time:

f (3)(x) = 3 · 2c2 + 4 · 3 · 2c3(x− a) + 5 · 4 · 3c4(x− a)2 + · · ·

Substitute x = a into the above getting:

c3 = 1
3 · 2f

(3)(a) = 1
3!f

(3)(a).
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Clearly, there is a general pattern. Solving the equation for the n-th coefficient,
we get:

cn = f (n)(a)
n! .

Theorem 35. Uniqueness of the Power Series Expansion. If f has a power
series expansion at x = a, that is, if:

f(x) =
∞∑

n=0
cn(x− a)n, |x− a| < R, R > 0,

then its coefficients are given by the formula:

cn = f (n)(a)
n! .

This power series is called the Taylor Series of f(x) centred at x = a. In
the special case where a = 0, the Taylor series is also called the Maclaurin
Series.

Example 20.1.1. Find the Maclaurin series of the function f(x) = ex and its
radius of convergence.
Solution. Note that f (n)(x) = ex for all n. Therefore:

f (n)(0) = 1, ∀n ⩾ 0.

Therefore, the Maclaurin series of f is:
∞∑

n=0

f (n)(0)
n! xn =

∞∑
n=0

xn

n! = 1 + x

1! +
x2

2! +
x3

3! + · · ·

To find the radius of convergence, we let an = xn

n! . Then:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)! ·
n!
xn

∣∣∣∣ = lim
n→∞

|x|
n+ 1 = 0 < 1.

So, by the ratio test, the series converges for all x, and the radius of convergence
is R = ∞.
Note. This example only tells us that if there exists a power series for ex, then
it is equal to the Maclaurin series as calculated.

20.2 Remainder & Error Bounds of Power Series
20.2.1 Taylor’s Theorem & The Remainder Polynomial
To show that a function has a power series representation, we need to study the
convergence of Taylor series. Let us consider the n-th degree Taylor polynomial
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of f at a:

Tn(x) =
n∑

i=0

f (i)(a)
i! (x− a)i

= f(a) + f ′(a)
1! (x− a) + f (2)(a)

2! (x− a)2 + · · ·+ f (n)(a)
n! (x− a)n.

Note that the n-th degree Taylor polynomial is just the sum of the first (n+ 1)
terms in the corresponding Taylor series. Therefore, f(x) can be represented by
its Taylor series if:

f(x) = lim
n→∞

Tn(x).

We denote the n-th remainder of f at a by:

Rn(x) = f(x)− Tn(x).

It follows that:
f(x) = Tn(x) +Rn(x).

So if we can show that the remainder vanishes, that is:

lim
n→∞

Rn(x) = 0 =⇒ lim
n→∞

Tn(x) = f(x).

We have therefore proved the following theorem.

Theorem 36. Remainder Polynomial tends to 0. If:

lim
n→∞

Rn(x) = 0, ∀|x− a| < R,

then f is equal to its Taylor series on the interval |x− a| < R.

Next, we study Rn(x), known as Taylor’s Theorem.

Theorem 37. Taylor’s Theorem. Assume that f (n+1)(x) exists and is
continuous. Then:

Rn(x) =
1
n!

∫ x

a

(x− u)nf (n+1)(u) du.

Proof. Taylor’s Theorem. Set:

In = 1
n!

∫ x

a

(x− u)nf (n+1)(u) du.

For n = 0, we have by definition that:

R0(x) = f(x)− f(a).

On the other hand,

I0(x) =
1
0!

∫ x

a

(x− u)0f (0+1)(u) du =
∫ x

a

f ′(x)(u) du = f(x)− f(a),
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by the fundamental theorem of calculus. Hence, we have proved that:

R0(x) = I0(x).

To prove the formula for n > 0, we apply integration by parts to In(x) with:

U = (x− u)n
n! , V ′ = f (n+1)(u).

Then:
U ′ = − (x− u)n−1

(n− 1)! , V = f (n)(u).

So we have:

In(x) =
∫ x

a

UV ′ du

= [UV ]xa −
∫ x

a

U ′V du

=
[
1
n! (x− u)nf (n)(u)

]x
a

−
∫ x

a

− (x− u)n−1

(n− 1)! f (n)(u) du

= − 1
n! (x− a)nf (n)(a) + In−1(x).

The result can be rewritten as:

In−1(x) =
f (n)(a)

n! (x− a)n + In(x).

Now, apply the recurrence relation n times:

f(x) = f(a) + I0(x)

= f(a) + f ′(a)
1! (x− a) + I1(x)

= f(a) + f ′(a)
1! (x− a) + f (2)(a)

2! (x− a)2 + I2(x)
...

= f(a) + f ′(a)
1! (x− a) + · · ·+ f (n)(a)

n! (x− a)n + In(x)

= Tn(x) + In(x).

This shows that In(x) = f(x) − Tn(x) which, by definition must be equal to
Rn(x).

20.2.2 Error Bound for Taylor Series

Theorem 38. Error Bound for Taylor Series. Let M be a number such
that |f (n+1)(x)| ⩽ M, ∀|x− a| ⩽ d. Then:

|Rn(x)| ⩽ M
|x− a|n+1

(n+ 1)! , |x− a| ⩽ d.
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Proof. Error Bound for Taylor Series. Assume that a ⩽ x ⩽ a+ d. Then, since
|f (n+1)(u)| ⩽ M for all a ⩽ u ⩽ x we have:

|Rn(x)| =
∣∣∣∣ 1n!

∫ x

a

(x− u)nf (n+1)(u) du
∣∣∣∣

⩽
1
n!

∫ x

a

|(x− u)nf (n+1)(u)|du

And since a ⩽ u ⩽ x, we ignore the absolute value sign:

⩽
M

n!

∫ x

a

(x− u)n du

= M

n!

[
−(x− u)n+1

n+ 1

]x
a

= M
|x− a|n+1

(n+ 1)! .

Example 20.2.1. Prove that f(x) = ex is equal to its Maclaurin Series.
Solution. It is enough to show that the remainder polynomial Rn(x) converges
to 0 for all x. First, pick an arbitrary positive number d. Note that:

|f (n+1)(x)| = ex ⩽ ed, ∀|x| ⩽ d.

Now apply the error bound for Taylor series with a = 0 and M = ed to get:

|Rn(x)| ⩽
ed

(n+ 1)! |x|
n+1, ∀|x| ⩽ d.

Taking the limit of the right hand side we get:

lim
n→∞

ed

(n+ 1)! |x|
n+1 = ed lim

n→∞

|x|n+1

(n+ 1)!
= 0.

It follows from the squeeze theorem that:
lim
n→∞

|Rn(x)| = 0,

and so:
lim
n→∞

Rn(x) = 0, ∀|x| ⩽ d.

Since d is arbitrary, the convergence is valid for all x.
Example 20.2.2. Find the Maclaurin series for sin x and prove that it represents
sin x, ∀x ∈ R.
Solution. First, we find the Maclaurin series. This is done by finding the form
of the n-th term. We arrange the prerequisite computations for the first few
terms of the sequence:

f(x) = sin x
f ′(x) = cosx

f (2)(x) = − sin x
f (3)(x) = − cosx
f (4)(x) = sin x

f(0) = 0
f ′(0) = 1

f (2)(0) = 0
f (3)(0) = −1
f (4)(0) = 0
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Clearly, we see that the derivatives repeat in a cycle of four, therefore, we can
write the Maclaurin series as follows:

Tn(x) = f(0) + f ′(0)
1! x+ f (2)(0)

2! x2 + f (3)(0)
3! x3 + · · ·

= x− x3

3! +
x5

5! −
x7

7! + · · ·

=
∞∑

n=0
(−1)n x2n+1

(2n+ 1)! .

Next, we must show that Rn(x) approaches 0 as n → ∞. Since f (n+1)(x) =
± sin x or ± cosx, we have:

|f (n+1)(x)| ⩽ 1, ∀x.

Apply the error bound formula with M = 1, to deduce that:

|Rn(x)| ⩽
M

(n+ 1)! |x
n+1| = |x|n+1

(n+ 1!) .

It can be shown that:
lim
n→∞

|x|n+1

(n+ 1)! = 0,

so by the squeeze theorem, lim
n→∞

|Rn(x)| = 0 and therefore, lim
n→∞

Rn(x) = 0, ∀x
as required.
Example 20.2.3. Find the Maclaurin series for cosx and prove that it represents
cosx, ∀x ∈ R.
Solution. We could proceed directly as in the preceding example, but it is
easier to differentiate the Maclaurin series for sin x:

cosx = d
dx [sin x]

= d
dx

[
x− x3

3! +
x5

5! −
x7

7! + · · ·
]

= 1− 3x2

3! + 5x4

5! − 7x6

7! + · · ·

= 1− x2

2! +
x4

4! −
x6

6! + · · ·

Since the Maclaurin series for sin x converges for all x, Theorem 34 tells us that
the differentiated series for cosx also converges for all x. Thus:

cosx = 1− x2

2! +
x4

4! −
x6

6! + · · ·

=
∞∑

n=0
(−1)n x2n

(2n)!
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The Binomial Series

21.1 Using the Binomial Theorem
We can find the Maclaurin series for the function f(x) = (1 + x)k where k is
a real number. First, we consider expanding the general expression (a + b)n,
where n is some positive integer. The Binomial Theorem states that for any
positive integer n:

(a+ b)n =
n∑

i=0

(
n

i

)
an−ibi,

where
(
n

i

)
is the binomial coefficient defined by:

(
n

i

)
= n!

i!(n− i)! =
n(n− 1)(n− 2) · · · (n− i+ 1)

i! .

Example 21.1.1. For n = 3, we have:

(a+ b)3 =
3∑

i=0

(
3
i

)
a3−ibi = a3 + 3a2b+ 3ab2 + b3.

This theorem is used exclusively in the case where n in (a+ b)n is strictly
a positive integer. When n is not a positive integer, the theorem’s conditions
are not satisfied, however, the theorem is still useable. First, we take a look at
the Maclaurin series for (1 + x)k where k is any real number. For notational
convenience, we extend the definition of the binomial coefficient to any real
number k: (

k

n

)
= k(k − 1)(k − 2) · · · (k − n+ 1)

n! .

By convention,
(
k

0

)
= 1.

Example 21.1.2. Find the Maclaurin series for f(x) = (1+ x)k, where k is any
real number.
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Solution. We first arrange the first few computations to deduce the general
formula:

f(x) = (1 + x)k

f ′(x) = k(1 + x)k−1

f (2)(x) = k(k − 1)(1 + x)k−2

f (3)(x) = k(k − 1)(k − 2)(1 + x)k−3

...
f (n)(x) = k(k − 1) · · · (k − n+ 1)(1 + x)k−n

f(0) = 1
f ′(0) = k

f (2)(0) = k(k − 1)
f (3)(0) = k(k − 1)(k − 2)

...
f (n)(0) = k(k − 1) · · · (k − n+ 1)

Therefore, the Macluarin series of f(x) = (1 + x)k is:
∞∑

n=0

f (n)(0)
n! xn =

∞∑
n=0

k(k − 1) · · · (k − n+ 1)
n! xn =

∞∑
n=0

(
k

n

)
xn.

Which is known as the Binomial Series.
Note. If k is a positive integer, then eventually, the terms in the binomial series
will be 0. For other values of k, none of the terms will be 0, and so we can try
the ratio test to determine its convergence:

Let an =
(
k

n

)
xn. Then:

∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣k(k − 1) · · · (k − n+ 1)(k − n)xn+1

(n+ 1)! · n!
k(k − 1) · · · (k − n+ 1)xn

∣∣∣∣
= |k − n|

n+ 1 |x|

=
∣∣1− k

n

∣∣
1 + 1

n

|x|

Taking the limits of both sides we see that:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|.

Thus by the ratio test, the binomial series converges if |x| < 1 and diverges if
|x| > 1.

The following theorem states that the function (1 + x)k is indeed equal to its
Maclaurin series.

Theorem 39. The Binomial Series. If k is any real number and |x| < 1,
then:

(1 + x)k =
∞∑

n=0

(
k

n

)
xn.

Example 21.1.3. Find the Maclaurin series for the function f(x) = 1√
4−x

.
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Solution. We rewrite f(x) in a form where we can apply the binomial series:

1
√
4− x

= 1√
4
(
1− x

4
)

= 1
2
√
1− x

4

= 1
2
(
1− x

4
)− 1

2

Use the binomial series with k = − 1
2 , and with x replaced by −x

4 :

1
√
4− x

= 1
2

∞∑
n=0

(
− 1

2
n

)(
−x

4
)n

= 1
2

∞∑
n=0

(
− 1

2
n

)
(−1)nx

n

4n

= 1
2 + 1

2

∞∑
n=1

(
− 1

2
n

)
(−1)nx

n

4n

We expand
(
− 1

2
n

)
, for n ⩾ 1, as follows:

(
− 1

2
n

)
=
(
− 1

2
) (

− 3
2
)
· · ·
(
− 2n−1

2
)

n!

= (−1)n 1 · 3 · 5 · · · (2n− 1)
2nn!

Substituting this back into equation, we get:

1
√
4− x

= 1
2 + 1

2

∞∑
n=1

1 · 3 · 5 · · · (2n− 1)
8nn! xn.

From the binomial series theorem, we know that htis series converges when:∣∣∣−x

4

∣∣∣ < 1,

that is, |x| < 4, so the radius of convergence in this case is R = 4.
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Finding Limits using Power
Series

22.1 Using known Power Series
We can use power series to evaluate the limit of a function. Here are some
important Maclaurin series:

1
1− x

=
∞∑

n=0
xn = 1 + x+ x2 + x3 + · · · R = 1

ex =
∞∑

n=0

xn

n! = 1 + x+ x2

2! +
x3

3! + · · · R = ∞

sin x =
∞∑

n=0
(−1)n x2n+1

(2n+ 1)! = x− x3

3! +
x5

5! −
x7

7! + · · · R = ∞

cosx =
∞∑

n=0
(−1)n x2n

(2n!) = 1− x2

2! +
x4

4! −
x6

6! + · · · R = ∞

tan−1 x =
∞∑

n=0
(−1)n x2n+1

2n+ 1 = x− x3

3 + x5

5 − x7

7 + · · · R = 1

ln(1 + x) =
∞∑

n=1
(−1)n−1x

n

n
= x− x2

2 + x3

3 − x4

4 + · · · R = 1

(1 + x)k =
∞∑

n=0

(
k

n

)
xn = 1 + kx+ k(k − 1)

2! x2 + · · · R = 1

Example 22.1.1. Find the sum of the series:

1
1 · 2 − 1

2 · 22 + 1
3 · 23 − 1

4 · 24 + · · ·

Solution. Using sigma notation, we can write the series as:
∞∑

n=1
(−1)n−1 1

n · 2n =
∞∑

n=1
(−1)n−1

( 1
2
)n
n

.
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From the table above, this series matches the entry for ln(1 + x) with x = 1
2 . So:

∞∑
n=0

(−1)n−1 1
n · 2n = ln

(
1 + 1

2

)
= ln 3

2 .
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