MH1200 Linear Algebra I.

Problem list for Week \#1.

This week's topics:

- Solving simple linear equations.
- Basics of the theory of vectors.

Note: for the questions on vectors, you may wish to use the graph paper drawn on the last page.

Core problems:

Problem 1:

Find the general solutions of the following linear equations

$$
\text { (i) } \quad x+y+z=1 \quad \text { (ii) } \quad x-y+3 z=5
$$

What is the geometric interpretation of the solution set in each case?

Problem 2:

Find the general solution of the following linear system. (In other words find the points (x, y, z) which solve both equations simultaneously.)

$$
\begin{array}{r}
x+y+z=1 \\
x-y+3 z=5
\end{array}
$$

We'll shortly learn some systematic procedures for solving systems like this, but it would be good to play with an example before we meet these procedures. Hint: you could use the 1st equation to eliminate one of the variables, say x, in the 2nd equation and then take one of the remaining variables, say z, as the free parameter. Then express y and x in terms of this free parameter to get an expression for the general solution.
What is the geometric interpretation of the solution set in this case?

Problem 3:

Give a parameterization for the set of solutions for the following linear equation:

$$
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=6 .
$$

Problem 4:

Draw the following vectors:

1. $(-1,2)$
2. $(-1,2)+(3,-3)$
3. $(1,-2,1)$
4. $(2,-1,-1)$

Problem 5:

Do there exist $a, b \in \mathbb{R}$ such that $(1,1,1)=a \cdot(1,-2,1)+b \cdot(2,-1,-1)$?

Problem 6:
Let $\vec{u}=(1,2)$ and $\vec{v}=(2,1)$. Draw the vectors

1. $\frac{1}{2} \vec{u}+\frac{1}{2} \vec{v}$
2. $\frac{3}{4} \vec{u}+\frac{1}{4} \vec{v}$
3. $\frac{1}{4} \vec{u}+\frac{3}{4} \vec{v}$

Problem 7:

Let $\vec{u}=(1,2)$ and $\vec{v}=(2,1)$. Draw the following sets of vectors.

1. $\{c \cdot \vec{u}+(1-c) \cdot \vec{v}: c \in \mathbb{R}, c \geq 0\}$.
2. $\{a \vec{u}+b \vec{v}: 0 \leq a \leq 1,0 \leq b \leq 1\}$.
3. $\{a \vec{u}+b \vec{v}: a+b \leq 1\}$.

More abstract or challenging problems:
Problem 8:
Let $S \subset \mathbb{R}^{n}$ denote a set of vectors in \mathbb{R}^{n}.
(i) Let $\vec{w} \in \mathbb{R}^{n}$ be a fixed vector. Define a new set S^{\prime} from S by:

$$
S^{\prime}=\{\vec{v}+\vec{w}, \vec{v} \in S\} \subset \mathbb{R}^{n} .
$$

How is the set of geometric points in \mathbb{R}^{n} corresponding to S^{\prime} geometrically related to the set of points in \mathbb{R}^{n} corresponding to S ?
(ii) Let $\lambda \in \mathbb{R}$ be a fixed real number and assume $\lambda>0$. Define a new set $S^{\prime \prime}$ from S by:

$$
S^{\prime \prime}=\{\lambda \vec{v}, \vec{v} \in S\} \subset \mathbb{R}^{n} .
$$

How is the set of geometric points in \mathbb{R}^{n} corresponding to $S^{\prime \prime}$ geometrically related to the set of points in \mathbb{R}^{n} corresponding to S ?

