MH1200 Linear Algebra I.

Problem set for Week \#3.

This week's topics:

- Gauss-Jordan elimination.
- Counting solutions to systems of linear equations containing unknown constants.

Core problems:

Problem 1:
Solve the following linear system by Gauss-Jordan elimination and back-substitution.

$$
\begin{aligned}
10 y-4 z+w & =1 \\
x+4 y-z+w & =2 \\
3 x+2 y+z+2 w & =5 \\
-2 x-8 y+2 z-2 w & =-4 \\
x-6 y+3 z & =1
\end{aligned}
$$

Problem 2:

Solve the following linear system by Gauss-Jordan elimination and back-substitution.

$$
\begin{aligned}
5 x_{1}-2 x_{2}+6 x_{3} & =0 \\
-2 x_{1}+x_{2}+3 x_{3} & =1
\end{aligned}
$$

Problem 3:

We consider the following linear system.

$$
\begin{aligned}
& x+y+a z=0 \\
& x+a y+z=0 \\
& a x+y+z=0
\end{aligned}
$$

Here a is a constant. Find the values of a for which the system has
(i) no solution
(ii) exactly one solution
(iii) infinitely many solutions.

Problem 4:

We consider the following linear system.

$$
\begin{aligned}
a x+9 y+2 z & =2 \\
x+a y+4 z & =4 \\
a y+2 z & =0
\end{aligned}
$$

Here a is a constant. Find the values of a for which the system has
(i) no solution,
(ii) exactly one solution,
(iii) infinitely many solutions.

Problem 5:

(From a Quiz in 2019.)
Determine the number of solutions of the following linear system in the variables x, y and z, depending on the value of an unknown constant a.

$$
\begin{aligned}
x+3 y+\left(2 a^{4}-32\right) z & =37+2 a \\
4 y & =28 \\
2 x+6 y+\left(5 a^{4}-80\right) z & =76+5 a
\end{aligned}
$$

Problem 6:

Consider the system

$$
\begin{aligned}
& a x+b y=f \\
& c x+d y=g
\end{aligned}
$$

Assume that $a \neq 0$. Give a condition on a, b, c, d, f, g for this system to have a unique solution.

Problem 7:

Find an example of a linear system with 3 variables and 4 equations that has
(i) no solution,
(ii) exactly one solution,
(iii) infinitely many solutions with two arbitrary parameters.

Problem 8:

A certain physical quantity f depends on another quantity x by

$$
f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

where a, b, c, d, e are unknown constants. To determine a, b, c, d, e the following measurements have been taken.

$$
\begin{array}{c|c|c|c|c|c}
x & 0 & 1 & 2 & 3 & 4 \\
\hline f(x) & 1 & 1 & 3 & 31 & 133
\end{array}
$$

Find the values of a, b, c, d, e.

Problem 9:

Solve the following system of nonlinear (!) equations.

$$
\begin{aligned}
x^{2}-y^{2}+2 z^{2} & =6 \\
2 x^{2}+2 y^{2}-5 z^{2} & =3 \\
2 x^{2}+5 y^{2}+z^{2} & =9
\end{aligned}
$$

More abstract or challenging problems:
Problem 10:
[Determining temperatures] Imagine we have a metal plate and that we fix the temperature at the boundaries of this plate (see picture) and let the plate come to a thermal equilibrium. The temperature of a point in the interior of the plate can be approximated as the average of the temperature of the 4 neighboring points: above, below, left, and right. Set up and solve the linear equations giving the temperatures $T_{1}, T_{2}, T_{3}, T_{4}$ in the interior of the plate.

