MH1200 Linear Algebra I.

Problem set \#4.

This week's topics:

- The elementary theory of matrices.
- The algebra of matrices.

Core problems:
Problem 1:
Let $\mathbf{A}=\left(a_{i j}\right)_{3 \times 4}$, where $a_{i j}=2 i-3 j, \mathbf{B}=\mathbf{I}_{4}, \mathbf{C}=\mathbf{0}_{3 \times 3}$,

$$
\begin{gathered}
\mathbf{D}=\left(d_{i j}\right)_{4 \times 3} \text { where } d_{i j}=\left\{\begin{aligned}
-1 & \text { if } i+j \text { is even } \\
1 & \text { if } i+j \text { is odd. }
\end{aligned}\right. \\
\mathbf{E}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right), \quad \mathbf{F}=\left(\begin{array}{cc}
5 & -1 \\
9 & 1 \\
2 & 0
\end{array}\right), \quad \text { and } \mathbf{G}=\left(\begin{array}{c}
1 \\
-1 \\
3 \\
2
\end{array}\right) .
\end{gathered}
$$

Evaluate the following, whenever possible.
(a) AD ,
(b) $\mathbf{D A}-3 \mathbf{B}$,
(c) D^{2},
(d) $\mathbf{E}^{2}+\mathbf{C}^{3}$,
(e) $\mathbf{D E}+2 \mathbf{D}$,
(f) EA,
(g) DB,
(h) CF ,
(i) $\mathbf{A G}$,
(j) FE,
(k) EF,
(l) $\mathbf{C A}$,
(m) $\mathbf{E}-\mathbf{E}^{T}$,
(n) $\mathbf{F}-\mathbf{F}^{T}$,
(o) $\mathbf{G G}^{T}$, (p) $\mathbf{G}^{T} \mathbf{G}$.

Problem 2:

The symbol \sum is used to denote the sum of a sequence of numbers. For example,

$$
\begin{gathered}
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n} \\
\sum_{x=0}^{m} f(x)=f(0)+f(1)+\cdots+f(m) \\
\sum_{k=1}^{r} c_{i k} d_{k j}=c_{i 1} d_{1 j}+c_{i 2} d_{2 j}+\cdots+c_{i r} d_{r j}
\end{gathered}
$$

Let $\mathbf{A}=\left(a_{i j}\right)$ be an $m \times n$ matrix and $\mathbf{B}=\left(b_{i j}\right)$ an $n \times m$ matrix, with $m, n \geq 5$.

1. Each of the following sums represents an entry of either $\mathbf{A B}$ or $\mathbf{B A}$. Determine which matrix product is involved and which entry of that product is represented in each case:
(i) $\sum_{k=1}^{n} a_{3 k} b_{k 4}$
(ii) $\sum_{p=1}^{n} a_{4 p} b_{p 1}$
(iii) $\sum_{q=1}^{m} a_{q 2} b_{3 q}$
(vi) $\sum_{x=1}^{m} b_{2 x} a_{x 5}$
2. Use the symbol \sum to express the following entries symbolically.
(a) In $\mathbf{A B}$, the entry in the 3rd row and 2nd column.
(b) In $\mathbf{B A}$, the entry in the 4 th row and 1st column.

Problem 3:

Using summation notation, prove that matrix multiplication is distributive. That is, prove that the following equation is true whenever it is well-defined (i.e. when all the shapes of the matrices match up):

$$
(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}
$$

and

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

(Maybe just bother proving the first equation. The second is exactly the same.)

Problem 4:

Recall that the trace $\operatorname{tr}(\mathbf{A})$ of a square matrix \mathbf{A} is defined to be the sum of its diagonal entries.

1. Show that the following basic properties of trace hold for any square matrices \mathbf{A} and \mathbf{B} of the same order, and any scalar $r \in \mathbb{R}$:
(a) $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$
(b) $\operatorname{tr}(r \mathbf{A})=r \operatorname{tr}(\mathbf{A})$
2. Show that for any matrices \mathbf{C} and \mathbf{D} where \mathbf{C} is $p \times q$ and \mathbf{D} is $q \times p$ then

$$
\operatorname{tr}(\mathbf{C D})=\operatorname{tr}(\mathbf{D C})
$$

This crucial property of trace is called cyclic invariance.
3. Exploit the properties of trace you proved in part 1 and 2 to prove the following fact: There are no square matrices \mathbf{A} and \mathbf{B} of the same order that satisfy

$$
\mathbf{A B}-\mathbf{B A}=\mathbf{I}
$$

Here \mathbf{I} denotes the identity matrix of the same order as \mathbf{A} and \mathbf{B}.

Problem 5:

Let \mathbf{A} be any diagonal matrix of order n. Show that a matrix \mathbf{B} with the property that $\mathbf{A B}=\mathbf{I}$ exists if and only if $a_{i i} \neq 0$ for all i.

Problem 6:

Let \mathbf{I}_{n} denote the $n \times n$-identity matrix. In other words this is the matrix whose (i, j)-entry is

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}
$$

Prove that for every $m \times n$ matrix \mathbf{A}

$$
\mathbf{I}_{m} \mathbf{A}=\mathbf{A} \mathbf{I}_{n}=\mathbf{A}
$$

This is a precise proof. You should also think of a more intuitive way of understanding this, perhaps with the "dividing-up-into-blocks" trick for understanding matrix multiplication.

More abstract or challenging problems:

Problem 7: (Part (ii) appeared on 2018 Midterm.)
(i) Let \mathbf{A} and \mathbf{B} be matrices such that the matrix product $\mathbf{A B}$ is well-defined. Explain why the matrix product $\mathbf{B}^{T} \mathbf{A}^{T}$ is also well-defined and prove that

$$
(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T} .
$$

(ii) Consider a square matrix \mathbf{A}. Show that \mathbf{A} is invertible if and only if its transpose is invertible.

Problem 8:

In lectures we met the concept of a lower triangular matrix. This is a square matrix satisfying the property that the entries $a_{i j}$ where $j>i$ are all zero. (In other words, the entries lying strictly above the diagonal are all zero.)
Prove that if both \mathbf{A} and \mathbf{B} are lower triangular matrices of the same order (i.e. the same square shape), then so is their product AB.
Use transpose to immediately deduce a similar property for upper triangular matrices.

Problem 9:

A square matrix \mathbf{A} is said to be

- an involutory matrix if $\mathbf{A}^{2}=\mathbf{I}$,
- an idempotent if $\mathbf{A}^{2}=\mathbf{A}$.

Show that every involutory matrix can be expressed as a difference of two idempotents.

Problem 10:

This problem concerns the Fibonacci sequence. The Fibonacci sequence is the sequence of numbers

$$
F_{0}, F_{1}, F_{2}, \ldots
$$

defined by setting $F_{0}=0, F_{1}=1$ and for every other $n \geq 2, F_{n}=F_{n-1}+F_{n-2}$. In other words, the nth Fibonacci number, for $n \geq 2$, is defined to be the sum of the two preceding Fibonacci numbers:

$$
F_{0}=0, F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, \ldots
$$

In this problem we'll prove a beautiful historical fact about what the Fibonacci numbers look like when they are very large - to be precise, that

$$
\lim _{n \rightarrow \infty}\left(F_{n}-\frac{1}{\sqrt{5}} \phi_{+}^{n}\right)=0
$$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the classical golden ratio. (For example see the Wikipedia page for the golden ratio for a fascinating survey of countless places this number appears in art and nature).

The first step is to prove (probably using induction) that for all $k \in \mathbb{N}$

$$
\left[\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right]^{k}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
F_{k} \\
F_{k+1}
\end{array}\right]
$$

The next step is to prove that we can diagonalize this matrix via the following formula:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=P\left[\begin{array}{cc}
\phi_{+} & 0 \\
0 & \phi_{-}
\end{array}\right] P^{-1}
$$

where

$$
\phi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}
$$

and

$$
P=\left[\begin{array}{cc}
1 & 1 \\
\phi_{+} & \phi_{-}
\end{array}\right] .
$$

Note in passing that the golden ratio ϕ_{+}and ϕ_{-}are the two roots of the equation $x^{2}-x-1=0$. Also know that "diagonalization" in general is a big topic in Linear Algebra II.

With these formulas you can write down a closed expression for F_{n} in terms of ϕ_{+}and ϕ_{-}and from there you can conclude the limit.

