
MH1200 Linear Algebra I.

Problem set #4.

This week’s topics:

� The elementary theory of matrices.

� The algebra of matrices.

Core problems:

Problem 1:

Let A = (aij)3×4, where aij = 2i− 3j, B = I4, C = 03×3,

D = (dij)4×3 where dij =

{
−1 if i+ j is even

1 if i+ j is odd.

E =

1 1 1
0 2 2
0 0 3

 , F =

5 −1
9 1
2 0

 , and G =


1
−1
3
2

 .

Evaluate the following, whenever possible.

(a) AD, (b) DA− 3B, (c) D2, (d) E2 + C3,

(e) DE + 2D, (f) EA, (g) DB, (h) CF,

(i) AG, (j) FE, (k) EF, (l) CA,

(m) E− ET , (n) F− FT , (o) GGT , (p) GTG.
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Problem 2:

The symbol
∑

is used to denote the sum of a sequence of numbers. For example,

n∑
i=1

ai = a1 + a2 + · · ·+ an,

m∑
x=0

f(x) = f(0) + f(1) + · · ·+ f(m),

r∑
k=1

cikdkj = ci1d1j + ci2d2j + · · ·+ cirdrj.

Let A = (aij) be an m× n matrix and B = (bij) an n×m matrix, with m,n ≥ 5.

1. Each of the following sums represents an entry of either AB or BA. Determine which
matrix product is involved and which entry of that product is represented in each case:

(i)
n∑

k=1

a3kbk4 (ii)
n∑

p=1

a4pbp1 (iii)
m∑
q=1

aq2b3q (vi)
m∑

x=1

b2xax5

2. Use the symbol
∑

to express the following entries symbolically.

(a) In AB, the entry in the 3rd row and 2nd column.

(b) In BA, the entry in the 4th row and 1st column.

Problem 3:

Using summation notation, prove that matrix multiplication is distributive. That is, prove that
the following equation is true whenever it is well-defined (i.e. when all the shapes of the matrices
match up):

(A + B)C = AC + BC

and
A (B + C) = AB + AC.

(Maybe just bother proving the first equation. The second is exactly the same.)
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Problem 4:

Recall that the trace tr(A) of a square matrix A is defined to be the sum of its diagonal entries.

1. Show that the following basic properties of trace hold for any square matrices A and B of
the same order, and any scalar r ∈ R :

(a) tr(A + B) = tr(A) + tr(B)

(b) tr(rA) = r tr(A)

2. Show that for any matrices C and D where C is p× q and D is q × p then

tr(CD) = tr(DC).

This crucial property of trace is called cyclic invariance.

3. Exploit the properties of trace you proved in part 1 and 2 to prove the following fact:
There are no square matrices A and B of the same order that satisfy

AB−BA = I.

Here I denotes the identity matrix of the same order as A and B.

Problem 5:

Let A be any diagonal matrix of order n. Show that a matrix B with the property that AB = I
exists if and only if aii 6= 0 for all i.

Problem 6:

Let In denote the n× n-identity matrix. In other words this is the matrix whose (i, j)-entry is

δij =

{
1 if i = j,
0 if i 6= j.

Prove that for every m× n matrix A

ImA = AIn = A.

This is a precise proof. You should also think of a more intuitive way of understanding this,
perhaps with the “dividing-up-into-blocks” trick for understanding matrix multiplication.
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More abstract or challenging problems:

Problem 7: (Part (ii) appeared on 2018 Midterm.)

(i) Let A and B be matrices such that the matrix product AB is well-defined. Explain why
the matrix product BTAT is also well-defined and prove that

(AB)T = BTAT .

(ii) Consider a square matrix A. Show that A is invertible if and only if its transpose is
invertible.

Problem 8:

In lectures we met the concept of a lower triangular matrix. This is a square matrix satisfying
the property that the entries aij where j > i are all zero. (In other words, the entries lying
strictly above the diagonal are all zero.)

Prove that if both A and B are lower triangular matrices of the same order (i.e. the same square
shape), then so is their product AB.

Use transpose to immediately deduce a similar property for upper triangular matrices.

Problem 9:

A square matrix A is said to be

� an involutory matrix if A2 = I,

� an idempotent if A2 = A.

Show that every involutory matrix can be expressed as a difference of two idempotents.
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Problem 10:

This problem concerns the Fibonacci sequence. The Fibonacci sequence is the sequence of numbers

F0, F1, F2, . . .

defined by setting F0 = 0, F1 = 1 and for every other n ≥ 2, Fn = Fn−1 + Fn−2. In other words,
the nth Fibonacci number, for n ≥ 2, is defined to be the sum of the two preceding Fibonacci
numbers:

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . . .

In this problem we’ll prove a beautiful historical fact about what the Fibonacci numbers look
like when they are very large - to be precise, that

lim
n→∞

(
Fn −

1√
5
φn
+

)
= 0

where φ = 1+
√
5

2
is the classical golden ratio. (For example see the Wikipedia page for the golden

ratio for a fascinating survey of countless places this number appears in art and nature).
The first step is to prove (probably using induction) that for all k ∈ N[

0 1
1 1

]k [
0
1

]
=

[
Fk

Fk+1

]
.

The next step is to prove that we can diagonalize this matrix via the following formula:[
0 1
1 1

]
= P

[
φ+ 0
0 φ−

]
P−1

where

φ± =
1±
√

5

2

and

P =

[
1 1
φ+ φ−

]
.

Note in passing that the golden ratio φ+ and φ− are the two roots of the equation x2−x−1 = 0.
Also know that “diagonalization” in general is a big topic in Linear Algebra II.

With these formulas you can write down a closed expression for Fn in terms of φ+ and φ− and
from there you can conclude the limit.
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