MH1200 Linear Algebra I.

Problem set \#7.

This week's topics:

- The two big theorems about determinants.
- The adjoint matrix of a matrix.
- Cramer's rule.

Core problems:

Problem 1:

Compute the inverses of the following matrices by using adjoint matrices.

$$
\left(\begin{array}{lll}
2 & 4 & 1 \\
0 & 1 & 4 \\
0 & 0 & 3
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 0 \\
3 & 0 & 3
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 3 & 5 \\
2 & 1 & 4 \\
-1 & 6 & 2
\end{array}\right) .
$$

Problem 2:

Let \mathbf{A} be an invertible square matrix all of whose entries are integers. Show that all entries of \mathbf{A}^{-1} are integers if and only if $\operatorname{det}(\mathbf{A})= \pm 1$.

Comment: Please observe that because I wrote "if and only if" there are two logical directions in this statement you have to explain.

Problem 3:

Solve the following linear systems by applying Cramer's rule.
(i)

$$
\begin{array}{r}
x+y-z=2 \\
3 x-y+z=5 \\
3 x+2 y+4 z=0
\end{array}
$$

(ii)

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}+x_{4} & =4 \\
x_{1}+x_{2}-x_{3}-x_{4} & =0 \\
-x_{1}+x_{2}+x_{3}-x_{4} & =-2 \\
-x_{1}+x_{2}-x_{3}+x_{4} & =4
\end{aligned}
$$

Problem 4:

Let

$$
\mathbf{A}=\left(\begin{array}{lll}
8 & a & 0 \\
0 & 8 & a \\
a & 0 & 8
\end{array}\right)
$$

where a is a real number.
(i) Compute $\operatorname{det}(\mathbf{A})$. For what values of a is \mathbf{A} invertible?
(ii) Under the condition that \mathbf{A} is invertible, solve the matrix equation

$$
\mathbf{A}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b \\
c \\
d
\end{array}\right)
$$

where b, c, d are real numbers. (Hint: The quickest way to do this now we have calculated the determinant of A is using Cramer's Rule.)

Problem 5:

Let

$$
\mathbf{A}=\left(\begin{array}{cccc}
a & 0 & 0 & b \\
0 & a & b & 0 \\
0 & b & a & 0 \\
b & 0 & 0 & a
\end{array}\right)
$$

where a and b are real numbers.
(i) Evaluate $\operatorname{det}(\mathbf{A})$. For what values of a and b is \mathbf{A} invertible?
(ii) Compute the adjoint matrix of \mathbf{A} for all values of a and b, and find \mathbf{A}^{-1} for all values of a and b for which \mathbf{A} is invertible.
(iii) Consider the matrix equation

$$
\mathbf{A X A}=\mathbf{I}
$$

where \mathbf{I} is an identity matrix. Determine the values of a and b for which a solution \mathbf{X} exists (justify your answer), and solve the matrix equation in these cases.

Problem 6:

(A Quiz problem from 2019.)
Consider the following matrix \mathbf{A}, where a is a constant real number.

$$
A=\left[\begin{array}{ccc}
1 & 1+a & 0 \\
0 & 2 & 0 \\
a & a & 1
\end{array}\right]
$$

(a) For what values of the constant a is A invertible?
(b) Calculate $\operatorname{adj}(A)$, the adjoint of A.
(c) Use part (b) to solve the equation

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]
$$

More abstract or challenging problems:

Problem 7:

Let \mathbf{A} be a n-by- n matrix. Let \mathbf{B} be the matrix where the (i, j) entry $\mathbf{B}(i, j)$ is determined by the corresponding (i, j) entry of \mathbf{A} via the formula $\mathbf{B}(i, j)=\frac{i}{j} \mathbf{A}(i, j)$. For example, in the 3 -by- 3 case, if

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccc}
a_{11} & \frac{1}{2} a_{12} & \frac{1}{3} a_{13} \\
2 a_{21} & a_{22} & \frac{2}{3} a_{23} \\
3 a_{31} & \frac{3}{2} a_{32} & a_{33}
\end{array}\right] .
$$

How does the determinant of \mathbf{B} relate to that of \mathbf{A} ?
Comment: There are many ways to approach this. One elegant way is to find a matrix equation that expresses \mathbf{B} in terms of \mathbf{A}.

Problem 8:

Let \mathbf{B} be an arbitrary $m \times n$ matrix.
(i) Show that the matrix $\mathbf{B}^{T} \mathbf{B}$ is a symmetric matrix.
(ii) Is it possible for every symmetric matrix \mathbf{A} to be written as $\mathbf{B}^{T} \mathbf{B}$ for some matrix \mathbf{B} of the same shape as A? Justify your answer.

Problem 9: (Proof of Cramer's Rule.)

In this exercise we will discover an easy proof of Cramer's rule. Let A be an invertible $n \times n$ matrix, and let \mathbf{B} be a $n \times 1$ matrix.

Because \mathbf{A} is invertible the matrix equation $\mathbf{A X}=\mathbf{B}$ has a unique solution \mathbf{X}. Denote the components of the unique solution \mathbf{X} via

$$
\mathbf{X}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]^{T}
$$

(a) For $1 \leq i \leq n$ let \mathbf{C}_{i} denote the $n \times 1$ matrix obtained from the i-th column of \mathbf{A}. Show that

$$
\mathbf{B}=x_{1} \mathbf{C}_{1}+x_{2} \mathbf{C}_{2}+\ldots+x_{n} \mathbf{C}_{n}
$$

(There are various ways to see this. One interesting way is using the "splitting a matrix product up into blocks" trick.)
(b) Let \mathbf{A}_{j} denote the matrix obtained from \mathbf{A} by replacing the j-th column with the matrix \mathbf{B}. Use fundamental properties of determinants to prove that

$$
\operatorname{det}\left(\mathbf{A}_{j}\right)=x_{j} \operatorname{det}(\mathbf{A})
$$

(c) Deduce Cramer's rule.

Problem 10: (From final exam 2019.)
(a) Let \mathbf{A} be an $n \times n$ matrix with the property that $\mathbf{A}^{m}=\mathbf{0}_{n \times n}$ where m, n are certain integers greater than zero. Calculate the determinant of A. Justify your answer.
(b) Let \mathbf{B} be an arbitrary $m \times m$ matrix for some integer m greater than zero. Carefully derive a formula for $\operatorname{det}(\operatorname{adj}(\mathbf{B}))$ in terms of $\operatorname{det}(\mathbf{B})$.

Problem 11:

Let \mathbf{A} and \mathbf{B} be two $n \times n$ matrices with determinant 1 and let $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$.
For each k such that $1 \leq k<n$ let \mathbf{X}_{k} denote the $(n-k) \times(n-k)$ matrix that results from forgetting the first k rows and the last k columns of \mathbf{X}. (In words, \mathbf{X}_{k} is the lower-left square $(n-k) \times(n-k)$ corner block appearing inside the matrix \mathbf{X}. It will probably be helpful to draw this on a diagram of the matrix.)

Let \mathbf{Y}_{k} be the $n \times n$ matrix obtained by making the first k columns of \mathbf{Y}_{k} the first k columns of \mathbf{A}, and making the remaining $(n-k)$ columns of \mathbf{Y} the first $(n-k)$ columns of \mathbf{B}.

Prove that for all $1 \leq k<n$:

$$
\operatorname{det}\left(\mathbf{X}_{k}\right)=\operatorname{det}\left(\mathbf{Y}_{k}\right)
$$

