MH1200 Linear Algebra I.

Problem set #7.

This week's topics:

- The two big theorems about determinants.
- The adjoint matrix of a matrix.
- Cramer's rule.

Core problems:

Problem 1:

Compute the inverses of the following matrices by using adjoint matrices.

(2)	4	1		/1	2	3		(1	3	5	
0	1	4	,	2	-1	0	,	2	1	4	.
$\left(0 \right)$	0	3/		$\sqrt{3}$	0	3/		$\begin{pmatrix} -1 \end{pmatrix}$	6	2	

Problem 2:

Let A be an invertible square matrix all of whose entries are integers. Show that all entries of A^{-1} are integers if and only if det $(A) = \pm 1$.

Comment: Please observe that because I wrote "if and only if" there are two logical directions in this statement you have to explain.

Problem 3:

Solve the following linear systems by applying Cramer's rule. (i)

$$\begin{aligned} x+y-z &= 2\\ 3x-y+z &= 5\\ 3x+2y+4z &= 0 \end{aligned}$$

(ii)

$$x_1 - x_2 + x_3 + x_4 = 4$$

$$x_1 + x_2 - x_3 - x_4 = 0$$

$$-x_1 + x_2 + x_3 - x_4 = -2$$

$$-x_1 + x_2 - x_3 + x_4 = 4$$

Problem 4:

Let

$$\mathbf{A} = \left(\begin{array}{rrr} 8 & a & 0\\ 0 & 8 & a\\ a & 0 & 8 \end{array}\right)$$

where a is a real number.

- (i) Compute $det(\mathbf{A})$. For what values of a is \mathbf{A} invertible?
- (ii) Under the condition that **A** is invertible, solve the matrix equation

$$\mathbf{A} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b \\ c \\ d \end{pmatrix}$$

where b, c, d are real numbers. (Hint: The quickest way to do this now we have calculated the determinant of **A** is using Cramer's Rule.)

Problem 5:

Let

$$\mathbf{A} = \left(\begin{array}{rrrr} a & 0 & 0 & b \\ 0 & a & b & 0 \\ 0 & b & a & 0 \\ b & 0 & 0 & a \end{array}\right),$$

where a and b are real numbers.

- (i) Evaluate $det(\mathbf{A})$. For what values of a and b is \mathbf{A} invertible?
- (ii) Compute the adjoint matrix of **A** for all values of a and b, and find \mathbf{A}^{-1} for all values of a and b for which **A** is invertible.
- (iii) Consider the matrix equation

$$\mathbf{AXA} = \mathbf{I},$$

where \mathbf{I} is an identity matrix. Determine the values of a and b for which a solution \mathbf{X} exists (justify your answer), and solve the matrix equation in these cases.

Consider the following matrix \mathbf{A} , where a is a constant real number.

$$A = \left[\begin{array}{rrrr} 1 & 1+a & 0 \\ 0 & 2 & 0 \\ a & a & 1 \end{array} \right].$$

- (a) For what values of the constant a is A invertible?
- (b) Calculate $\operatorname{adj}(A)$, the adjoint of A.
- (c) Use part (b) to solve the equation

$$A\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} 1\\ -1\\ 1\end{bmatrix}.$$

More abstract or challenging problems:

Problem 7:

Let **A** be a *n*-by-*n* matrix. Let **B** be the matrix where the (i, j) entry $\mathbf{B}(i, j)$ is determined by the corresponding (i, j) entry of **A** via the formula $\mathbf{B}(i, j) = \frac{i}{j}\mathbf{A}(i, j)$. For example, in the 3-by-3 case, if

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} a_{11} & \frac{1}{2}a_{12} & \frac{1}{3}a_{13} \\ 2a_{21} & a_{22} & \frac{2}{3}a_{23} \\ 3a_{31} & \frac{3}{2}a_{32} & a_{33} \end{bmatrix}$$

How does the determinant of **B** relate to that of **A**?

Comment: There are many ways to approach this. One elegant way is to find a matrix equation that expresses \mathbf{B} in terms of \mathbf{A} .

Problem 8:

Let **B** be an arbitrary $m \times n$ matrix.

- (i) Show that the matrix $\mathbf{B}^T \mathbf{B}$ is a symmetric matrix.
- (ii) Is it possible for every symmetric matrix \mathbf{A} to be written as $\mathbf{B}^T \mathbf{B}$ for some matrix \mathbf{B} of the same shape as \mathbf{A} ? Justify your answer.

Problem 9: (Proof of Cramer's Rule.)

In this exercise we will discover an easy proof of Cramer's rule. Let \mathbf{A} be an invertible $n \times n$ matrix, and let \mathbf{B} be a $n \times 1$ matrix.

Because A is invertible the matrix equation AX = B has a unique solution X. Denote the components of the unique solution X via

$$\mathbf{X} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T.$$

(a) For $1 \le i \le n$ let \mathbf{C}_i denote the $n \times 1$ matrix obtained from the *i*-th column of **A**. Show that

$$\mathbf{B} = x_1 \mathbf{C}_1 + x_2 \mathbf{C}_2 + \ldots + x_n \mathbf{C}_n.$$

(There are various ways to see this. One interesting way is using the "splitting a matrix product up into blocks" trick.)

(b) Let \mathbf{A}_j denote the matrix obtained from \mathbf{A} by replacing the *j*-th column with the matrix \mathbf{B} . Use fundamental properties of determinants to prove that

$$\det(\mathbf{A}_i) = x_i \det(\mathbf{A}).$$

(c) Deduce Cramer's rule.

Problem 10:

(From final exam 2019.)

- (a) Let **A** be an $n \times n$ matrix with the property that $\mathbf{A}^m = \mathbf{0}_{n \times n}$ where m, n are certain integers greater than zero. Calculate the determinant of **A**. Justify your answer.
- (b) Let **B** be an arbitrary $m \times m$ matrix for some integer m greater than zero. Carefully derive a formula for det(adj(**B**)) in terms of det(**B**).

Problem 11:

Let **A** and **B** be two $n \times n$ matrices with determinant 1 and let $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$.

For each k such that $1 \leq k < n$ let \mathbf{X}_k denote the $(n-k) \times (n-k)$ matrix that results from forgetting the first k rows and the last k columns of \mathbf{X} . (In words, \mathbf{X}_k is the lower-left square $(n-k) \times (n-k)$ corner block appearing inside the matrix \mathbf{X} . It will probably be helpful to draw this on a diagram of the matrix.)

Let \mathbf{Y}_k be the $n \times n$ matrix obtained by making the first k columns of \mathbf{Y}_k the first k columns of \mathbf{A} , and making the remaining (n - k) columns of \mathbf{Y} the first (n - k) columns of \mathbf{B} .

Prove that for all $1 \le k < n$:

$$\det\left(\mathbf{X}_{k}\right) = \det\left(\mathbf{Y}_{k}\right)$$