MH1200 Linear Algebra I.

Problem set \#8.

This week's topics:

- The definition of a subspace of \mathbb{R}^{n}.
- The basic theory of subspaces.

Core problems:

Problem 1:

Determine which of the following subsets of \mathbb{R}^{3} or \mathbb{R}^{4} are actually subspaces. Give a brief justification. Reminder: To show a subset is in fact a subspace you either have to directly check that the axioms are true, or you may use the fact we proved in lectures that the set of solutions to a homogeneous system of linear equations is always a subspace. Another possibility is to show that the subset you are studying is the span of a set of vectors, which we also proved is always a subspace. On the other hand, to show that a subset isn't a subspace, it is enough to exhibit one specific example where one of the axioms fails.

Comment: if you are struggling with set theory notation, a good way to start this problem is to write out a few vectors in each of the sets below so you understand what the sets are first. You take numbers satisfying the conditions on the right of the \mid symbol, then substitute them into the formulae to the left of the \mid symbol.

1. $\{(0,0,0)\}$.
2. $\{(1,1,1)\}$.
3. $\{(0,0,0),(1,1,1)\}$.
4. $\{(0,0, c) ; c \in \mathbb{Z}\}$.
5. $\{(0,0, c) ; c \in \mathbb{R}, c \geq 0\}$.
6. $\{(0,0, c) ; c \in \mathbb{R}\}$.
7. $\{(1,1, c) ; c \in \mathbb{R}\}$.
8. $\{(a, b, c) ; a, b, c \in \mathbb{R}$ and $a \geq b \geq c\}$.
9. $\{(a, b, c) ; a, b, c \in \mathbb{R}$ and $4 a=3 b\}$.
10. $\{(a, b, b) ; a, b \in \mathbb{R}\}$.
11. $\{(a, b, a b) ; a, b \in \mathbb{R}\}$.
12. $\left\{\left(a^{2}, b^{2}, c^{2}\right) ; a, b, c \in \mathbb{R}\right\}$.
13. $\left\{\left(a^{3}, b^{3}, c^{3}\right) ; a, b, c \in \mathbb{R}\right\}$.
14. $\{(x, y, z) ; x, y, z \in \mathbb{R}$ and $x+y-2 z=0\}$.
15. $\{(x-1, y, z) ; x, y, z \in \mathbb{R}$ and $x+y-2 z=0\}$.
16. $\{(x, y-1, z) ; x, y, z \in \mathbb{R}$ and $x+y-2 z=1\}$.
17. $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) ; x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R} \quad\right.$ and $\left.\quad x_{1}=x_{2}+x_{3}=x_{4}-x_{3}+2 x_{1}\right\}$.

Problem 2:

Let U, V, W be three planes in \mathbb{R}^{3} where

$$
\begin{aligned}
U & =\{(x, y, z) ; 2 x-y+3 z=0\}, V=\{(x, y, z) ; 3 x+2 y-z=0\}, \\
W & =\{(x, y, z) ; x-3 y-2 z=1\} .
\end{aligned}
$$

1. Determine which of U, V, W contain the origin.
2. Give parameterizations for the sets $U \cap V$ and $V \cap W$. (In other words: find a parameterization for the general solution of the corresponding linear system which describes the intersection).
3. Is $U \cap V$ a subspace of \mathbb{R}^{3} ? Is $V \cap W$ a subspace of \mathbb{R}^{3} ? Justify your answers.

Problem 3:

Let V be a subspace of \mathbb{R}^{3}. Define a corresponding subset W of \mathbb{R}^{2} by $W=\{(x, z) ;(x, y, z) \in V\}$. (In words, W is the subset of \mathbb{R}^{2} consisting of pairs of numbers with the property that the pair is the first coordinate and the third coordinate of some vector in the subspace V.)
(i) Show that W is a subspace of \mathbb{R}^{2}.
(ii) What is W if $V=\{(x, y, 0) ; x, y \in \mathbb{R}\}$?

Problem 4: (Assembled from different versions of a Quiz in 2019.)

Consider the following subsets of \mathbb{R}^{3}. In each case, state whether the subset is or is not a subspace of \mathbb{R}^{3}. In each case justify your answer.
(i) $S_{1}=\left\{(a, b, c) \in \mathbb{R}^{3} ; a+b=0, b+c+1=0\right\}$.
(ii) $S_{2}=\left\{(a, b, c) \in \mathbb{R}^{3} ;\left|\begin{array}{rrrr}1 & 2 & 3 & 4 \\ a & 0 & b & 0 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 14\end{array}\right|=0\right\}$.
(iii) $S_{3}=\left\{(a, b, c) \in \mathbb{R}^{3} ;\left|\begin{array}{rrr}1 & 1 & 1 \\ a^{2} & b & c \\ 2 & 1 & 1\end{array}\right|=0\right\}$.
(iv) $S_{4}=\left\{(a, b, c) \in \mathbb{R}^{3} ; a+b=0, b+c=0\right\}$.
(v) $S_{5}=\left\{(a, b, c) \in \mathbb{R}^{3} ; \operatorname{det}\left(\left[\begin{array}{ccc}1 & a^{2} & 1 \\ 1 & b^{2} & 1 \\ 1 & c^{2} & 1\end{array}\right]\right)=0\right\}$.
(vi) $S_{6}=\left\{(a, b, c) \in \mathbb{R}^{3}:\left|\begin{array}{rrrr}1 & 2 & 3 & 4 \\ a^{2} & 0 & b^{2} & 0 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right|=0\right\}$.

Problem 5: (Appeared on the final exam 2018.)
(a) Write down the formula for the trace of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Now consider the following subsets of \mathbb{R}^{4}. In each case either briefly prove the given set is a subspace of \mathbb{R}^{4}, or briefly prove it is not a subspace.
(b) $S_{1}=\left\{(a, b, c, d) \in \mathbb{R}^{4} ; \operatorname{tr}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=0\right\}$.
(c) $S_{2}=\left\{(a, b, c, d) \in \mathbb{R}^{4} ; \operatorname{tr}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right) \geq 0\right\}$.
(d) $S_{3}=\left\{(a, b, c, d) \in \mathbb{R}^{4} ; \operatorname{tr}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{2}\right)=0\right\}$.
(e) $S_{4}=\left\{(a, b, c, d) \in \mathbb{R}^{4} ; \operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{T}\right) \geq 0\right\}$.

Hint: Don't be distracted by these matrix expressions. This question is about subsets of \mathbb{R}^{4}. The simplest thing is to calculate these matrix expressions and just work with the expressions that result from the calculation like you did in Question 1.

Problem A

(From final exam 2019.)

(a) Consider the following subset of \mathbb{R}^{3}

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, x_{1} x_{2} x_{3}=0\right\}
$$

Either prove that it is a subspace of \mathbb{R}^{3} or prove that it is not.
(b) Give an example of a non-empty subset U of \mathbb{R}^{2} simultaneously satisfying the two properties that

- U is closed under vector addition
- whenever $\mathbf{u} \in U$ then $(-1) \mathbf{u} \in U$ as well
but which is not a subspace of \mathbb{R}^{2}.

More abstract or challenging problems:

Problem 6:

In this problem we'll interpret \mathbb{R}^{n} to be the set of column vectors with n entries. In other words, instead of writing the list horizontally

$$
\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}
$$

in this problem we'll write the list vertically

$$
\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right] .
$$

Now let A be an $m \times n$ matrix. Define $V=\left\{\mathbf{A u} \mid \mathbf{u} \in \mathbb{R}^{n}\right\} \subset \mathbb{R}^{m}$. In words: V is the set of all possible vectors you can get by left-multiplying \mathbf{A} onto some column vector \mathbf{u}. This set is called the "image" of the matrix \mathbf{A} in the codomain \mathbb{R}^{m}.

1. Show that V is a subspace of \mathbb{R}^{m}.
2. Give an explicit parametrization for the subspace V in the cases
(i) $\mathbf{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1\end{array}\right)$.
(ii) $\mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 1\end{array}\right)$.

Comment on the next two problems: Problems 7 and 8.
In the next two problems we'll consider whether there is a natural way to combine two subspaces V_{1}, V_{2} of some \mathbb{R}^{n} to create a new subspace of \mathbb{R}^{n} which contains both V_{1} and V_{2}. We know from a theorem proved in lectures that the intersection $V_{1} \cap V_{2}$ is always another subspace, but usually it doesn't contain V_{1} and V_{2} so we need to guess again. We might guess that the union of the subspaces $V_{1} \cup V_{2}$ would be the right thing to do, but in Problem 6 you'll show that the union is never a subspace except for the special cases where one of V_{1}, V_{2} is contained in the other one. In Problem 7 you'll learn the correct way to combine two subspaces to make a new subspace: the sum of subspaces $V_{1}+V_{2}$.

Problem 7:

Consider two subspaces V_{1} and V_{2} of some \mathbb{R}^{n}. Show that if their union $V_{1} \cup V_{2}$ is also a subspace of \mathbb{R}^{n} then either $V_{1} \subset V_{2}$, or $V_{2} \subset V_{1}$, (or both, in which case the subspaces are equal).

Problem 8:

Consider two subspaces V_{1} and V_{2} of some \mathbb{R}^{n}. Define the sum of these subspaces $V_{1}+V_{2}$ to be the subset of \mathbb{R}^{n} defined by the set theoretic expression

$$
V_{1}+V_{2}=\left\{\vec{v}_{1}+\vec{v}_{2} ; \vec{v}_{1} \in V_{1}, \vec{v}_{2} \in V_{2}\right\}
$$

In words: $V_{1}+V_{2}$ is the set of all possible vectors in \mathbb{R}^{n} you can get by taking a vector \vec{v}_{1} from V_{1}, a vector \vec{v}_{2} from V_{2}, and adding them together: $\vec{v}_{1}+\vec{v}_{2}$.

1. Show that $V_{1}+V_{2}$ is indeed a subspace of \mathbb{R}^{n} containing both V_{1} and V_{2}.
2. Moreover, explain why if W is any subspace of \mathbb{R}^{n} containing both V_{i} then $V_{1}+V_{2} \subset W$.
