MH1200 Linear Algebra I.

Problem set $\# 9$.

This week's topics:

- Span.

Core problems:

Problem 1:

Let V be the subset of \mathbb{R}^{4} given by

$$
V=\left\{(w, x, y, z) \mid w, x, y, z \in \mathbb{R}^{4}, \quad w+x=y+z=-x+2 y\right\} .
$$

1. Show that V is a subspace of \mathbb{R}^{4}.
2. Express V as the span of a collection of vectors in \mathbb{R}^{4}.

Problem 2:

Consider the homogeneous linear system

$$
\begin{array}{r}
10 x_{2}-4 x_{3}+x_{4}=0 \\
x_{1}+4 x_{2}-x_{3}+x_{4}=0 \\
3 x_{1}+2 x_{2}+x_{3}+2 x_{4}=0 \\
-2 x_{1}-8 x_{2}+2 x_{3}-2 x_{4}=0 \\
x_{1}-6 x_{2}+3 x_{3}=0
\end{array}
$$

Express the solution set as the span of some vectors in \mathbb{R}^{4}.

Problem 3:

Consider the following collection of vectors in \mathbb{R}^{4} :

$$
S=\{(0,1,0,0),(-a, 0,1,-1),(0, a, 0,0),(1,0,0,1)\}
$$

where a is a real number.
(i) Show that no matter what we set a to, $\operatorname{span}(S) \neq \mathbb{R}^{4}$.
(ii) Find an example of a vector in \mathbb{R}^{4} that is not contained in $\operatorname{span}(S)$.

Problem 4:

Consider the following vectors in \mathbb{R}^{4} :

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{1}}=(2,0,2,-4), \mathbf{u}_{\mathbf{2}}=(1,0,2,5), \mathbf{u}_{\mathbf{3}}=(0,3,6,9), \mathbf{u}_{4}=(1,1,2,-1), \\
& \mathbf{v}_{\mathbf{1}}=(-1,2,1,0), \mathbf{v}_{\mathbf{2}}=(3,1,4,0), \mathbf{v}_{\mathbf{3}}=(0,1,1,3), \mathbf{v}_{\mathbf{4}}=(-4,3,-1,6) .
\end{aligned}
$$

Determine if the following are true.
(i) $\operatorname{span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}, \mathbf{u}_{\mathbf{4}}\right\} \subset \operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$.
(ii) $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\} \subset \operatorname{span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}, \mathbf{u}_{4}\right\}$.
(iii) $\operatorname{span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}, \mathbf{u}_{4}\right\}=\mathbb{R}^{4}$.
(iv) $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}=\mathbb{R}^{4}$.

Problem 5:

Determine which of the following statements are true. Justify your answer.
(i) If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in \mathbb{R}^{3} such that $\mathbf{u} \neq \mathbf{v}, \mathbf{u} \neq \mathbf{w}$ and $\mathbf{v} \neq \mathbf{w}$, then $\operatorname{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}=\mathbb{R}^{3}$.
(ii) If S_{1} and S_{2} are two subsets of a real vector space, then $\operatorname{span}\left(S_{1} \cap S_{2}\right)=\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.
(iii) If S_{1} and S_{2} are two subsets of a real vector space, then $\operatorname{span}\left(S_{1} \cup S_{2}\right)=\operatorname{span}\left(S_{1}\right) \cup \operatorname{span}\left(S_{2}\right)$.

Problem 6:

Let V be the subset of \mathbb{R}^{4} given by

$$
V=\{(a, b, c, d) \mid a, b, c, d \in \mathbb{R} \quad \text { and } \quad a+b=c+d\} .
$$

(i) Show that V is a subspace of \mathbb{R}^{4}.
(ii) Let $S=\{(1,0,2,-1),(0,-3,1,-4),(3,6,4,5)\}$.

Is $\operatorname{span}(S) \subseteq V$? Is $V \subseteq \operatorname{span}(S)$? Is $\operatorname{span}(S)=V$?

More abstract or challenging problems:

Problem 7:

Consider some subspace $V \subset \mathbb{R}^{n}$ and assume that V is spanned by vectors

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\} .
$$

(i) Show that the following is also a spanning set

$$
\left\{\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{2}-\mathbf{v}_{3}, \ldots, \mathbf{v}_{m-1}-\mathbf{v}_{m}, \mathbf{v}_{m}\right\} .
$$

(ii) Show that the following is also a spanning set

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}, \ldots, \mathbf{v}_{1}+\ldots+\mathbf{v}_{m}\right\} .
$$

