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Lecture No. 1

Vector Spaces

1.1 Vector Space Axioms

We define V as a non-empty set of vectors and F as a field of scalars like
R, C. Vectors can be added:

u+ v u, v ∈ V.

Vectors can be multiplied by scalars:

λu u ∈ V, λ ∈ F.

Note. Vector addition or scalar multiplication in general will not yield
another vector in V.

A vector space follows the following axioms:

1. Closure under vector addition:

u+ v ∈ V, ∀u, v ∈ V.

2. Closure under scalar multiplication:

λu ∈ V, ∀u ∈ V, λ ∈ F.

3. Vector addition is commutative:

u+ v = v + u, ∀u, v ∈ V.

4. Vector addition is associative:

(u+ v) + w = u+ (v + w), ∀u, v, w ∈ V.

5. There is a unique zero vector:

∃z ∈ V s.t v + z = z + v = v, ∀v ∈ V.
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6. There are unique negative vectors:

∀v ∈ V, ∃w ∈ V s.t. v + w = 0.

7. Multiplying with the scalar 1 has no effect:

1v = v, ∀v ∈ V.

8. Scalar multiplication is associative:

(λµ)v = λ(µv), ∀λ, µ ∈ F,∀v ∈ V.

9. Vector addition is distributive:

λ(u+ v) = λu+ λv, ∀λ ∈ F,∀u, v ∈ V.

10. Addition of scalars is distributive:

(λ+ µ)v = λv + µv, ∀λ, µ ∈ F,∀v ∈ V.

To prove that V is a vector space, we must show that all ten axioms are
satisfied. To prove that V is not a vector space, we must show that at least one
condition is not satisfied.

1.2 Valid Vector Spaces
Example 1.2.1. The set of all n-tuples with entries from a field F is denoted
by Fn:

{(a1, a2, . . . , an) : ai ∈ F}.
if u = (a1, a2, . . . , an) ∈ Fn, v = (b1, b2, . . . , bn) ∈ Fn, and λ ∈ F then:

u+ v = (a1 + b1, a2 + b2, . . . , an + bn); λu = (λa1, λa2, . . . , λan).

Example 1.2.2. Mm×n(F ), the set of all m× n matrices with entries from F :

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 : aij ∈ F

 .

The rows of the preceding matrix are regarded as vectors in Fn and the columns
are regarded as vectors in Fm. If A,B ∈ Mm×n(F ) and λ ∈ F , then:

(A+B)ij = aij + bij ; (λA)ij = λaij , (1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n).

Example 1.2.3. F(S,R), the set of all functions from S to R, where S is any
non-empty set:

{f : S 7→ R}.
If f, g ∈ F(S,R) and λ ∈ R, then:

(f + g)(s) = f(s) + g(s); (λf)(s) = λ[f(s)], ∀s ∈ S.

These operations are common in calculus.



LECTURE NO. 1. VECTOR SPACES 4

Example 1.2.4. P (R), the set of all polynomials with coefficients from R:

{anxn + · · ·+ a1x+ a0 : ai ∈ R}.

If f(x) = anx
n + · · · + a1x + a0, g(x) = bmxm + · · · + b1x + b0, m ⩽ n, and

λ ∈ R, then:

f(x) + g(x) = (an + bn)xn + · · ·+ (a1 + b1)x+ (a0 + b0)
λf(x) = λanx

n + λan−1x
n−1 + · · ·+ λa1x+ λa0

1.3 Invalid Vector Spaces
Example 1.3.1. Let V = {(a1, a2) : a1, a2 ∈ R}, F = R. For (a1, a2), (b1, b2) ∈
V and λ ∈ R, define the following:

(a1, a2) + (b1, b2) = (a1 + b1, a2 − b2)
λ(a1, a2) = (λa1, λa2)

Condtions are not satisfied, vector addition is not commutative:

(a1, a2) + (b1, b2) = (a1 + b1, a2 − b2)
(b1, b2) + (a1, a2) = (a1 + b1, b2 − a2)
(a1, a2) + (b1, b2) ̸= (b1, b2) + (a1, a2), ∀a2, b2 ∈ R.

Example 1.3.2. Let V = {(a1, a2) : a1, a2 ∈ R}, F = R. For (a1, a2), (b1, b2) ∈
V and λ ∈ R, define the following:

(a1, a2) + (b1, b2) = (a1 + b1, 0)
λ(a1, a2) = (λa1, 0)

Conditions are not satisfied, checking if there is a unique zero vector z = (b1, b2)
such that:

u+ z = u, ∀u = (a1, a2) ∈ V.
Since:

LHS = u+ z = (a1, a2) + (b1, b2) = (a1 + b1, 0).
the given equality becomes (a1 + b1, 0) = (a1, a2), ∀(a1, a2) ∈ V, which is
equivalent to:

z = (b1, b2), ∀(b1, b2) ∈ V s.t. b1 = 0.
which is not unique.

1.4 Elementary Consequences
The following are elementary consequences of the definition of a vector space:

Cancelation Law for vector addition:

∀u, v, w ∈ V, u+ w = v + w =⇒ u = v.
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Properties of Scalar Multiplication in any Vector Space V:

0fu = 0v, ∀u ∈ V, 0f ∈ F, 0v ∈ V
(−λ)u = −(λu) = λ(−u), ∀λ ∈ F, ∀u ∈ V

λ0 = 0, ∀λ ∈ F, 0 ∈ V



Lecture No. 2

Subspaces

2.1 Basic definition
Abstractly, a subspace is a subset that possesses the same structure as its
superset.

Definition 1. Subspace of a vector space. If V is a vector space, and W is
a subset of V, then W is a subspace of V, if it is a vector space with respect
to addition and scalar multiplication that is defined on V.

In any vector space V, V is also considered a subspace, and {0} is also a
subspace, called the zero subspace.

It is not necessary to verify all 10 conditions of a vector space to prove that
a subset of a vector space is a subspace.

Theorem 1. Three condition test for subspaces. Let V be an arbitrary
vector space, and let W denote a subset of V. Then W is a subspace iff the
following three conditions hold for operations defined in V:

1. 0 ∈ W (Non-Empty).

2. u+ v ∈ W, ∀u, v ∈ W (Closed under vector addition).

3. λu ∈ W, ∀λ ∈ F , u ∈ W (Closed under scalar multiplication).

2.2 Examples
Example 2.2.1. Verify if Pn(R), the set of all polynomials in P (R) having
degree less than or equal to n (n ⩾ 0, n ∈ N) is a subspace of P (R).

Axiom 1. Pn(R) is non-empty:
The zero vector in Pn(R) is the zero polynomial, a constant polynomial whose

coefficients are all equal to 0. The degree of this polynomial is undefined, but by
convention it is set to −1 or −∞. The zero polynomial belongs to Pn(R).

6
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Axiom 2. Pn(R) is closed under vector addition:
Consider two arbitrary polynomials from Pn(R):

A(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

B(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

Their sum is a polynomial of the following form:

A(x) +B(x) = (an + bn)xn + (an−1 + bn−1)xn−1 + · · ·+ (a1 + b1)x+ (a0 + b0).

obviously belongs to Pn(R)

Axiom 3. Pn(R) is closed under scalar multiplication:

λA(x) = λ(anxn + an−1x
n−1 + · · ·+ a1x+ a0)

= λanx
n + λan−1x

n−1 + · · ·+ λa1x+ λa0

Which also belongs to Pn(R), making it a subspace of P (R).

Example 2.2.2. Verify if C(R), the set of all continuous real-valued functions
defined on R is a subspace of F(R,R).

Axiom 1. C(R) is non-empty:
The zero vector in C(R) is the zero function:

f0(x) = 0, ∀x ∈ R.

We write f0 ≡ 0. This function is obviously continuous on R, and therefore
f0 ∈ C(R).

Axiom 2. C(R) is closed under vector addition:
Consider any two functions f(x), g(x) ∈ C(R). Their sum is a function of the
following form:

h(x) = f(x) + g(x).
and it is a real-valued function which is continuous on R, ∴ h(x) ∈ C(R).

Axiom 3. C(R) is closed under scalar multiplication:

λf(x),∀λ ∈ R, f(x) ∈ C(R).

Which is obviously in C(R), making it a subspace of F(R,R).

2.3 Forming New Subspaces
The following theorems show how to form a new subspace from other subspaces.

Theorem 2. Any intersection of subspaces of a vector space V is a
subspace of V.

Proof. Intersections of subspaces. Note that the intersection of subspaces is not
necessarily finite. Let S be a collection of subspaces of V, and let W denote the
intersection of the subspaces in S.
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Axiom 1. W is non-empty:
Since every subspace ∈ S contains the zero vector, 0 ∈ W.

Axiom 2. W is closed under vector addition:
Let u, v ∈ W. Then u, v are contained in each subspace in S. Since each subspace
in S is closed under vector addition, it follows that u+ v is contained in each
subspace in S.

∴ u, v ∈ W =⇒ u+ v ∈ W.

Axiom 3. W is closed under scalar multiplication:
Let u ∈ W. Then u is in every subspace in S. Since each subspace in S is closed
under scalar multiplication, it follows that λu is contained in each subspace in S.

∴ u ∈ W =⇒ λu ∈ W.

So the intersection of subspaces of a vector space is also a subspace.

Theorem 3. The union of two subspaces of a vector space V is not
necessarily a subspace of V. The union contains the zero vector, and is
closed under scalar multiplication, but in general the union of subspaces
need not be closed under vector addition.

Proof. Consider a vector space V = R2, the Cartesian plane, and two subspaces:

W1 = {(x, y) : y = 0}
W2 = {(x, y) : x = 0}

This is the x-axis and y-axis, whose union W1 ∪W2 is not a subspace of R2.
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Linear Combinations &
Independence

3.1 Linear Combinations & Span

Definition 2. Linear Combination. Consider a vector space V over a
field F and a non-empty subset S ⊂ V. Then a vector v ∈ V is a linear
combination of vectors in S if:

∃u1, u2, . . . , un ∈ S, λ1, λ2, . . . , λn ∈ F.

such that:
v = λ1u1 + λ2u2 + · · ·+ λnun.

We can then define span(S) to be the set containing all linear combinations of
the vectors in S.

Theorem 4. Smallest subspace. The set span(S) is the smallest subspace
of V that contains S. This means that span(S) is a subspace of V that
contains S, and that ∀ W subspaces of V:

S ⊆ W =⇒ span(S) ⊆ W.

Proof. This result is clearly true if S = ∅, because span(∅)={0}. Now consider-
ing the case where S ≠ ∅, we must first prove that span(S) is a subspace of V
containing S. We can easily verify the sufficient conditions since all the linear
combinations of the elements in S will be closed under vector addition and scalar
multiplication.

Moreover, S ⊂ span(S), because any vector u ∈ S can always be written as
a linear combination of the vectors in S, namely:

u = 1u, u ∈ S.

Next we must prove that ∀ W subspaces of V:

S ⊆ W =⇒ span(S) ⊆ W.

9
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Let v be an arbitrary vector in span(S). This means that:

v = λ1u1 + λ2u2 + · · ·+ λnun.

where u1, u2, . . . , un ∈ S and λ1, λ2, . . . , λn ∈ F . Since u1, u2, . . . , un ∈ S, these
vectors are in W. Taking into account the fact that W is a subspace of V, we see
that:

λ1u1 + λ2u2 + · · ·+ λnun ∈ W
∴ v ∈ W

∴ span(S) ⊆ W

As a consequence of the theorem we can say that a subset of a vector space is a
subspace if and only if the set equals its span.

3.2 Linear Dependence & Independence

Definition 3. Linear Dependence & Independence. Consider a vector
space V over a field F , and a set S ⊂ V. The set S is considered to be
linearly dependent if:

∃u1, u2, . . . , un ∈ S, λ1, λ2, . . . , λn ∈ F.

Where u1 ̸= u2 ̸= · · · ̸= un and ∀n ∈ Z, λn ̸= 0 such that:

λ1u1 + λ2u2 + · · ·+ λnun = 0.

Conversely we say that the set S is linearly independent if the only
solution to the equation:

λ1u1 + λ2u2 + · · ·+ λnun = 0.

is where λ1 = λ2 = · · · = λn = 0.

Example 3.2.1. Determine if the set {p0(x), p1(x), . . . , pn(x)}, where:

p0(x) = 1 + x+ x2 + · · ·+ xn

p1(x) = x+ x2 + · · ·+ xn

...
pn(x) = xn

is linearly independent in Pn(R). Consider the equation:

λ0p0(x) + λ1p1(x) + · · ·+ λnpn(x) = 0.
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which is equivalent to the following system of equations:

λ0 + λ1 + · · ·+ λn−1 + λn = 0 (for xn)
λ0 + λ1 + · · ·+ λn−1 = 0 (for xn−1)

...
...

λ0 + λ1 = 0 (for x)
λ0 = 0 (for the constant term)

By back-substitution we get:

λ0 = λ1 = λ2 = · · · = λn−1 = λn = 0.

Which shows that the set is linearly independent in Pn(R).

The following is an important result of the definition of linear dependence
and independence.

Theorem 5. Consider a vector space V over a field F , and the following
relation between sets:

S1 ⊂ S2 ⊂ V.

Then if S1 is linearly dependent, S2 is also linearly dependent. And if S2 is
linearly independent, S1 is also linearly independent.

From this theorem, we can have the following statement on linear dependence.

Theorem 6. Suppose the S is any linearly dependent set such that:

|S| ⩾ 2.

Then ∃v ∈ S which can be written as a linear combination of the other
vectors in S, and therefore the subset obtained by removing v from S has
the same span as S.

Proof. Since S is linearly dependent, ∃u1, u2, . . . , un ∈ S and ∃λ1, λ2, . . . , λn ∈ F
where ∀n ∈ Z, λn ̸= 0 such that:

λ1u1 + λ2u2 + · · ·+ λnun = 0.

This gives the following:

u1 = −λ2

λ1
u2 − · · · − λn

λ1
un.

which means that u1 can be expressed as a linear combination of vectors
u2, . . . , un, and therefore there will be some v ∈ S as in the theorem stated.
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Bases & Dimension

4.1 Bases
Definition 4. Basis. Consider a vector space V over a field F . A set β ⊂ V
is a basis for V, if β is both linearly independent and it generates V:

span(β) = V.

Example 4.1.1. Because span(∅)={0} and ∅ is linearly independent, ∅ is a
basis for the zero vector space.
Example 4.1.2. In Fn the set {e1, e2, . . . , en}, where e1 = (1, 0, 0, . . . , 0), e2 =
(0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1), is the standard basis for Fn.

Theorem 7. Consider a vector space V over a field F , and the basis for V
represented as β = {u1, u2, . . . , un} ⊂ V then:

∀v ∈ V ∃!λ1, λ2, . . . , λn ∈ F such that v = λ1u1 + λ2u2 + · · ·+ λnun.

Where ∃! means “there uniquely exists”.

Proof. Suppose β = {u1, u2, . . . , un} is a basis for V. Now let v ∈ V, since β
generates V, we have v ∈ span(β). Then there exist λ1, λ2, λn ∈ F such that:

v = λ1u1 + λ2u2 + · · ·+ λnun.

Now assume there is another set of scalars µ1, µ2, . . . , µn such that:

v = µ1u1 + µ2u2 + · · ·+ µnun.

Taking the difference of these two linear combinations we get:

(λ1 − µ1)u1 + (λ2 − µ2)u2 + · · ·+ (λn − µn)un = 0.

However, β is linearly independent, and so the coefficients in the equation above
are all zero:

∴ λ1 = µ1, λ2 = µ2, . . . , λn = µn.

Thus v is uniquely expressed as a linear combination of the vectors in β.
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Theorem 8. Consider a vector space V over a field F , and a finite set S
that generates V. Then some subset of S is a basis for V, and V has a finite
basis.

Based on this theorem, we have a method for reducing a finite spanning set to
a finite basis. Let {u1, u2, . . . , un} be a finite spanning set of vectors in V with
u1 ̸= 0.

Step 1: Choose u1 ̸= 0 and keep it in the ‘expected’ basis.

Step 2: Determine whether u2 is a linear combination of the remaining vectors
to its left.

• If it is, then cross off u2.

• If it isn’t then keep u2.

Step k: Determine whether uk is a linear combination of the remaining vectors
to its left.

• If it is, then cross off uk.

• If it isn’t then keep uk.

Step n: Determine whether un is a linear combination of the remaining vectors
to its left.

• If it is, then cross off un, and the remaining vectors to its let form a basis
for V.

• If it isn’t then keep un, and the remaining vectors to its left together with
un form a basis for V.

4.2 Dimension
Theorem 9. Replacement Theorem. Consider a vector space V over a field
F , a set G ⊂ V that generates V and contains n vectors, and a linearly
independent set L ⊂ V that contains m vectors. Then:

m ⩽ n.

and:
∃G′ ⊂ G, |G′| = n−m such that L ∪G′ generates V.

As a result of this theorem, we can say that if V, a vector space, has a finite
basis, then every basis for V contains the same number of vectors.

Proof. Suppose β is a basis for V containing n vectors. Now, let γ be any other
basis for V. Now assume that γ contains more that n vectors (at least n+ 1).
Then we can select a set S ⊂ γ containing n+ 1 vectors which are all linearly
independent.
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Now we have:

S is linearly independent, |S| = n+ 1,
β generates V, |β| = n.

And by the first conclusion of the replacement theorem:

|S| ⩽ |β| ≡ n+ 1 ⩽ n.

Which is a contradiction. Therefore, γ is finite, and the number m of vectors in
γ satisfies m ⩽ n. Interchanging the roles of β and γ, and arguing as above, we
obtain n ⩽ m, therefore m = n.

This fact lends itself to the definition of the dimension of a vector space.

Definition 5. Dimension, finite-dimensional, & infinite-dimensional. When
the basis β of a vector space V over a field F has a cardinality of n:

|β| = n.

We say that the dimension of V is n:

dim(V) = n.

If n is finite, we say that V is finite-dimensional. If n is not finite, we say
that V infinite-dimensional.

Example 4.2.1. Standard dimensions of vector spaces:

1. dim({0}) = 0.

2. dim(Fn) = n.

3. dim(Mm×n(F )) = mn.

4. dim(Pn(F )) = n+ 1.

Example 4.2.2. The dimension of a vector space depends on its field of scalars.
If V = C and F = C then:

dim(C(over C)) = 1.

And an appropriate basis would be β = {1}.
If V = C and F = R then:

dim(C(over R)) = 2.

And an appropriate basis would be β = {1, i}.

If you have a linearly independent subset W ⊂ V which has a cardinality lower
than the dimension of V, you can extend it to create a basis for V by making a
set W′ = W + β where β is the standard basis for V, and apply the reduction
algorithm in section 4.1.



Lecture No. 5

Linear Transformation
Notation, Null Space, &
Range

5.1 Basic Notation
If V and W are vector spaces, the mapping T from V to W is a function that
assigns to each vector v ∈ V a unique vector w ∈ W. In this case we say that T
maps V into W, and write:

T : V 7→ W.

For each v ∈ V the vector w = T(v) ∈ W is the image of v under T.

Definition 6. Linear Transformation. Consider the vector spaces V and W
over a field F . Then T : V 7→ W is a linear transformation if ∀u, v ∈ V,
∀λ ∈ F the following conditions hold:

T(u+ v) = T(u) + T(v)
T(λu) = λT(u),

or:
T(λu+ µv) = λT(u) + µT(v),∀u, v ∈ V, ∀λ, µ ∈ F.

Example 5.1.1. Determine if the transformation T : R2 7→ R2 defined by:

T(a1, a2) = (a1 + a2,−a1).

is linear.
Solution. Writing the vectors in column form:

T
[
a1
a2

]
=
[
a1 + a2
−a1

]
.

Consider the arbitrary vectors:

u =
[
a1
a2

]
, v =

[
b1
b2

]
∈ R2,

15
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and scalars λ, µ ∈ R. We must verify the condition for linearity. For the left
hand side we have:

T(λu+ µv) = T
([

λa1
λa2

]
+
[
µb1
µb2

])
= T

[
λa1 + µb1
λa2 + µb2

]
=
[
(λa1 + µb1) + (λa2 + µb2)

−(λa1 + µb1)

]
For the right hand side we have:

λT(u) + µT(v) = λ

[
a1 + a2
−a1

]
+ µ

[
b1 + b2
−b1

]
=
[
(λa1 + µb1) + (λa2 + µb2)

−(λa1 + µb1)

]
The left hand side and the right hand side are equal and therefore T is a linear
transformation.
Example 5.1.2. Determine if the transformation T : M2×2(R) 7→ R defined by:

T(A) = det(A).

or otherwise written:
T
[
a1 a2
a3 a4

]
= a1a4 − a2a3.

is linear.
Solution. In this case it is sufficient to show that either of the two condi-
tions for linearity are not satisfied. Looking at the condition regarding scalar
multiplication:

T(λA) = λa1λa4 − λa2λa3

= λ2 det(A)

and on the other hand we have:

λT(A) = λdet(A).

Both sides of the equation are not equivalent, and therefore the transformation
is not linear.

Theorem 10. Let T : V 7→ W be a linear transformation. The following
properties hold as a consequence:

1. T(0) = 0, or T(0v) = 0w

2. T(λu+ v) = λT(u) + T(v), ∀u, v ∈ V, ∀λ ∈ F

3. T(u− v) = T(u)− T(v), ∀u, v ∈ V

4. ∀u1, u2, . . . , un ∈ V, ∀λ1, λ2, . . . , λn ∈ F :

T
(

n∑
i=1

λiui

)
=

n∑
i=1

λiT(ui).
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Note. The second property combines the two requirements for the linearity of
T into one statement, and is generally used to prove that a transformation is
linear.
We can use linear transformations to describe some familiar concepts. Differenti-
ation can be described as T : Pn(R) 7→ Pn−1(R):

T(f(x)) = f ′(x), ∀f ∈ Pn(R).

Proof. Let g(x), h(x) ∈ Pn(R) and λ ∈ R. Consider:

T(λg(x) + h(x)) = (λg(x) + h(x))′

= λg′(x) + h′(x)
= λT(g(x)) + T(h(x))

And therefore T is a linear transformation.

5.2 Null Space & Range
There are two basic and important transformations that appear frequently called
the identity and zero transformations.

Definition 7. Identity & Zero transformation. The identity transforma-
tion IV : V 7→ V is defined by:

IV(u) = u, ∀u ∈ V.

The zero transformation T0 : V 7→ W is defined by:

T0(u) = 0, ∀u ∈ V.

They are both linear transformations.

There are also two important sets associated with linear transformations. They
are called the null space and range.

Definition 8. Null Space (Kernel) & Range (Image). Consider a linear
transformation T : V 7→ W. N(T) the null space (or kernel) of T is
defined as:

N(T) = {v ∈ V : T(v) = 0}.

And R(T) the range (or image) of T is defined as:

R(T) = {T(v) : v ∈ V}.

Thus the null space is the set of all vectors in V that are mapped to the
zero vector, while the range is the set of all images in W of the mapping.

Example 5.2.1. For the identity transformation IV : V 7→ V:

N(IV) = {0}
R(IV) = V
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For the zero transformation T0 : V 7→ W:

N(T0) = V
R(T0) = {0}

Example 5.2.2. Find the null space and range of the transformation T : R3 7→
R2 defined by:

T(a1, a2, a3) = (a1 − a2, 2a3).

Solution. For N(T) we have:

T

a1a2
a3

 =
[
a1 − a2
2a3

]
=
[
0
0

]
.

Which implies the following:

a1 = a2

a3 = 0

and so we can describe the null space as such:

N(T) = {(a, a, 0) : a ∈ R}.

As R(T) ⊆ R2, it suffices to prove that R2 ⊆ R(T). So we must prove that
for any v = (b1, b2) ∈ R2 there exists w = (a1, a2, a3) ∈ R3 such that T(w) = v:

T

a1a2
a3

 =
[
a1 − a2
2a3

]
=
[
b1
b2

]
.

Which implies that:

a1 − a2 = b1

2a3 = b2

Which is a set of linear equations that have infinitely many solutions, one of
which is a1 = b1, a2 = 0, a3 = b2

2 and hence R(T) = R2

We see that in the examples above, the null space and range of each of the
linear transformations are a subspace. This leads to the next theorem.

Theorem 11. Let T be a linear transformation that maps the vector space
V to the vector space W:

T : V 7→ W.

Then, the null space N(T) and R(T) are subspaces of V and W respectively.

Proof. Null Space of a Linear Transformation is a Subspace. For a set of vectors
to be a subspace, we must check the three axioms are satisfied:
Axiom 1. N(T) is non-empty: Since T(0V) = 0W, 0V ∈ N(T).
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Axiom 2. N(T) is closed under vector addition: We see that ∀u, v ∈ N(T) we
have:

T(u+ v) = T(u) + T(v)
= 0W + 0W
= 0W

∴ (u+ v) ∈ N(T) ∀u, v ∈ N(T).

Axiom 3. N(T) is closed under scalar multiplication: We see that ∀u ∈ N(T)
and ∀λ ∈ F we have:

T(λu) = λT(u)
= λ · 0W
= 0W

∴ λu ∈ N(T) ∀u ∈ N(T), λ ∈ F

The above method can be applied to prove that the range is also a subspace.

For a given linear transformation, we can find N(T) by simply solving the
equation:

T(v) = 0.
Where the set of all solutions is precisely N(T), which in practice reduces to
solving a linear system of equations. To find R(T), we can find the basis for the
range we can apply the transformation to the basis.

Theorem 12. Let T be a linear transformation:

T : V 7→ W.

And let β be a basis for V:

β = {v1, v2, . . . , vn}.

Then:
R(T) = span(T(β)).

Proof. Basis for Range is the Linear Transformation of Basis Vectors. First we
prove that R(T) ⊆ span(T(β)). Take an arbitrary vector w ∈ R(T). The fact
that w ∈ R(T) implies that there is v ∈ V with w = T(v). Since β is a basis for
V, we can represent v in terms of vectors in β:

v =
n∑

i=1
λivi, λi ∈ F (1 ⩽ i ⩽ n).

Hence, by the linearity of T:

w = T(v) = T
(

n∑
i=1

λivi

)
=

n∑
i=1

λiT(vi) ∈ span(T(β)).

So R(T) ⊆ span(T(β)).
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Next we prove span(T(β)) ⊆ R(T). Take an arbitrary vector w ∈ span(T(β)).
Then there exists scalars λ1, λ2, . . . , λn ∈ F such that:

w = λ1T(v1) + λ2T(v2) + · · ·+ λnT(vn)
= T(λ1v1 + λ2v2 + · · ·+ λnvn)

Therefore, w is the image under T of a linear combination of vectors in V. This
shows that w ∈ R(T), and ∴ span(T(β)) ⊆ R(T).

Example 5.2.3. The linear transformation T : P2(R) 7→ M2×2(R) is defined by:

T(f(x)) =
[
f(1)− f(2) 0

0 f(0)

]
.

Find a basis for R(T) and dim(R(T)).
Solution. Since β =

{
1, x, x2} is a basis for P2(R), we have:

R(T) = span(T(β))
= span

({
T(1),T(x),T

(
x2)})

= span
({[

0 0
0 1

]
,

[
−1 0
0 0

]
,

[
−3 0
0 0

]})

Notice that
[
−1 0
0 0

]
,
[
−3 0
0 0

]
are linearly dependent. Then:

R(T) = span
({[

0 0
0 1

]
,

[
−1 0
0 0

]
,

[
−3 0
0 0

]})
= span

({[
0 0
0 1

]
,

[
−1 0
0 0

]})
Since the two vectors in the resultant set are linearly independent, we can
conclude that it is a basis for R(T), and so dim(R(T)) = 2.
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Rank & Nullity

6.1 Rank-Nullity Theorem
The null space and range are important and have special names attached to
them.

Definition 9. Nullity & Rank. Let T be a linear transformation T : V 7→ W,
where dim(N(T)) < ∞ and dim(R(T)) < ∞. Then,

dim(N(T))

is known as the nullity of T. And then,

dim(R(T))

is known as the rank of T.

The balance between rank and nullity is reflected in the following theorem.

Theorem 13. Rank-Nullity Theorem. Let T be a linear transformation
T : V 7→ W and let dim(V) < ∞. Then:

nullity(T) + rank(T) = dim(V).

Otherwise written:

dim(N(T)) + dim(R(T)) = dim(V).

Proof. Rank-Nullity Theorem. Suppose that dim(V) = n and dim(N(T)) = k.
Then we consider three cases.
Case 1: 0 < k < n, that is k ∈ {1, 2, . . . , n− 1}.

Let {v1, v2, . . . , vk} be a basis for N(T). Therefore this basis for N(T) is a
linearly independent subset of V. Then by the Replacement Theorem, we
may extend {v1, v2, . . . , vk} to a basis for V:

β = {v1, v2, . . . , vk, vk+1, . . . , vn}.

21
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Now consider the following set S:

S = {T(vk+1),T(vk+2), . . . ,T(vn)} .

And consider the fact that:

R(T) = span({T(v1),T(v2), . . . ,T(vn)}).

Since T(vi) = 0 for 1 ⩽ i ⩽ k because vi ∈ N(T) we have:

R(T) = span({T(vk+1),T(vk+2), . . . ,T(vn)})
= span(S).

Now to prove that S is linearly independent, we consider the equation:

ak+1T(vk+1) + ak+2T(vk+2) + · · ·+ anT(vn) = 0, ak+1, ak+2, . . . , an ∈ F.

And since T is linear, we can rewrite the equation as:

T(ak+1vk+1 + ak+2vk+2 + · · ·+ anvn) = 0.

Therefore:
ak+1vk+1 + ak+2vk+2 + · · ·+ anvn ∈ N(T).

Since {v1, v2, . . . , vk} is a basis for N(T), there exist c1, c2, . . . , ck ∈ F such that:

ak+1vk+1 + ak+2vk+2 + · · ·+ anvn = c1v1 + c2v2 + · · ·+ ckvk.

Otherwise rewritten:

−c1v1 − c2v2 − · · · − ckvk + ak+1vk+1 + ak+2vk+2 + · · ·+ anvn = 0.

And since β is a basis for V and is linearly independent, the coefficients of the
last equation must all be 0. Thus S is a linearly independent set and is a basis
for R(T), and therefore:

rank(T) = dim(R(T)) = n− k.

Case 2: k = n.
In this case, the image of every vector in V is the zero vector in W, so that

R(T) = {0}, and therefore dim(R(T)) = dim({0}) = 0. The statement of the
theorem is true for this case.

Case 3: k = 0. In this case N(T) = {0}, so the nullity is 0. If {v1, v2, . . . , vn} is
a basis for V, then by the theorem above we have:

R(T) = span({T(v1),T(v2), . . . ,T(vn)}).

And a similar argument to the one above shows that:

{T(v1),T(v2), . . . ,T(vn)}

is linearly independent. Thus dim(R(T)) = n = dim(V), and the result also
holds in this case.
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Example 6.1.1. T : P4(R) 7→ P2(R), linear, defined by:

T(p(x)) = p(2)(x).

Find a basis for N(T) as well as for R(T).
Solution. For N(T), by definition:

p(x) = a+ bx+ cx2 + dx3 + ex4 ∈ N(T) ⇐⇒ T(p(x)) = 0.

Or equivalently:

p(2)(x) = 2c+ 6dx+ 12ex2 = 0, ∀x ∈ R ⇐⇒ c = d = e = 0.

Thus:
p ∈ N(T) ⇐⇒ p(x) = a+ bx, a, b ∈ R.

This shows that N(T) consists of all polynomials of degree at most 1. So
N(T) = P1(R). Hence, {1, x} is a basis for N(T), and dim(N(T)) = 2.

For R(T): since dim(P4(R)) = 5, by the rank-nullity theorem, we have:

2 + dim(R(T)) = 5 =⇒ dim(R(T)) = 3.

Now we consider the standard basis β =
{
1, x, x2, x3, x4} for P4(R) to get:

R(T) = span
({

T(1),T(x),T(x2),T(x3),T(x4)
})

= span
({

0, 0, 2, 6x, 12x2})
= span

({
2, 6x, 12x2})

Three vectors generate R(T), and hence since dim(R(T)) = 3, these vectors form
a basis for R(T). Observe that R(T) is just P2(R).
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Properties of Linear
Transformations

7.1 One-to-one and onto
For further study of properties of linear transformations, the concept of one-to-
one and onto mappings is needed.

Definition 10. One-to-one, onto, and bijective. A mapping T is one-to-
one (or injective), if:

x ̸= y =⇒ T(x) ̸= T(y) ⇐⇒ T(x) = T(y) =⇒ x = y.

That is, distinct elements of V must have distinct images in W. T is onto
(or surjective), if:

T(V) = W.

That is, the range of T is W. T is bijective if it is both injective and
surjective.

Example 7.1.1. Let T : R2 7→ R2 be defined by:

T(v) = Av, A =
[
1 1
−1 0

]
.

Show that T is one-to-one and onto.
Solution. To show that T is one-to-one, let:

u =
[
u1
u2

]
, v =

[
v1
v2

]
.

Then:
T(u) =

[
1 1
−1 0

]
·
[
u1
u2

]
, T(v) =

[
1 1
−1 0

]
·
[
v1
v2

]
Now if T(u) = T(v), then: [

u1 + u2
−u1

]
=
[
v1 + v2
−v1

]
.

24
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The last matrix equation gives u1 = v1, u2 = v2, that is, u = v. Thus T is
one-to-one. To show that T is onto, take an arbitrary w =

[
a
b

]
∈ R2. We must

show that there is a vector v =
[
v1
v2

]
∈ R2 such that:

T(v) =
[
1 1
−1 0

]
·
[
v1
v2

]
=
[
a
b

]
⇐⇒

[
v1 + v2
−v1

]
=
[
a
b

]
.

The last matrix equation gives v1 = −b, v2 = a+ b. Thus T is onto.
For a linear transformation, both of these concepts are connected to the rank
and nullity of the transformation. The following result gives a useful way to
detrmine whether a linear transformation is one-to-one.

Theorem 14. Consider the linear transformation:

T : V 7→ W.

Then the followng bijective statement holds true:

T one-to-one ⇐⇒ N(T) = {0}.

That is, the null space only contains the trivial solution.

Proof. T one-to-one ⇐⇒ N(T) = {0}. Suppose that T is one-to-one and
v ∈ N(T). Now, we must show that v = 0. Indeed:

v ∈ N(T) =⇒ T(v) = 0
T linear =⇒ T(0) = 0

=⇒ v = 0.

Since T is one-to-one. Thus N(T) = {0}. Now, suppose that T(u) = T(v). Then
0 = T(u)− T(v). By linearity of T, we have T(u)− T(v) = T(u− v). Then we
get T(u− v) = 0, which means that u− v ∈ N(T) = {0}. So u− v = 0 or u = v.
Thus T is one-to-one.

Example 7.1.2. Consider the linear transformation T : R2 7→ R2 defined by:

T
[
x
y

]
=
[
2x− 3y
5x+ 2y

]
.

Use the theorem above to prove that T is one-to-one.
Solution. The vector

[
x
y

]
is in N(T) if and only if:

2x− 3y = 0
5x+ 2y = 0

This linear system has the unique solution x = y = 0. Thus N(T) = {0} and
hence by the theorem above, T is one-to-one.

In general, a linear transformation may be one-to-one without being onto
and may be onto without being one-to-one. Surprisingly, these properties are
equivalent in an important special case.
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Theorem 15. Consider the linear transformation T : V 7→ W where:

dim(V) = dim(W) < ∞.

Then the following are equivalent:

1. T is one-to-one

2. T is onto

3. rank(T) = dim(V), that is dim(R(T)) = dim(V)

Proof. Linear transformations that preserve dimension are bijective. We use the
dimension theorem:

dim(N(T)) + dim(R(T)) = dim(V).

By the theorem above:

T is one-to-one ⇐⇒ N(T) = {0}
⇐⇒ dim(N(T)) = 0
⇐⇒ dim(R(T)) = dim(V) ⇐⇒ dim(R(T)) = dim(W)
⇐⇒ dim(R(T)) = dim(W)

Since R(T) ⊆ W, the last equality is equivalent to R(T) = W, which means that
T is onto.

Example 7.1.3. Consider the linear transformation T : P2(R) 7→ P3(R) defined
by:

T(f(x)) = 2f ′(x) +
∫ x

0
3f(t) dt.

Solution. Since
{
1, x, x2} is a basis for P2(R), we have:

R(T) = span
({

T(1),T(x),T
(
x2)})

= span
({

3x, 2 + 3
2x

2, 4x+ x3
})

We can confirm that
{
3x, 2 + 3

2x
2, 4x+ x3} is linearly independent, then:

rank(T) = dim(R(T)) = 3.

Because dim(P3(R)) = 4, T is not onto. From the dimension theorem, dim(N(T))+
3 = 3, so dim(N(T)) = 0, and therefore, N(T) = {0}. This means that T is
one-to-one.

7.2 Uniqueness of linear transformations
One of the most important properties of a linear transformation is that it is
completely determined by its action on a basis.
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Theorem 16. Unique Linear Transformation. Suppose that we have vector
spaces V & W over the field F . And suppose that V has a basis:

{v1, v2, . . . , vn} .

Then for every set w1, w2, . . . , wn ∈ W, there exists uniquely a linear
transformation T : V 7→ W depending on the set such that:

T(vi) = wi, ∀i = 1, 2, . . . , n.

Proof. Existence of unique linear transformation. For this proof, we have to
prove two parts, the existence and the uniqueness of T. To prove existence, we
let v ∈ V. Then v can be represented uniquely in the form:

v =
n∑

i=1
λivi,

where λ1, λ2, . . . , λn are scalars. Then, let us define T : V 7→ W by the rule:

T(v) =
n∑

i=1
λiwi.

We can prove that T is linear. Indeed, for u, v ∈ V and λ ∈ F there are scalars
a1, a2, . . . , an and b1, b2, . . . , bn such that:

u =
n∑

i=1
aivi and v =

n∑
i=1

bivi.

Then λu+ v =
n∑

i=1
(λai + bi)vi, and so

T(λu+ v) = T
(

n∑
i=1

(λai + bi)vi

)

=
n∑

i=1
(λai + bi)wi

= λ
n∑

i=1
aiwi +

n∑
i=1

biwi

= λT(u) + T(v).
Thus it is clear that:

T(vi) = wi ∀i = 1, 2, . . . , n.
To prove the transformation’s uniqueness, we first suppose that there exists
another linear transformation U : V 7→ W such that U(vi) = wi for i = 1, 2, . . . , n.

Then for v ∈ V with v =
n∑

i=1
λivi, we have:

U(v) =
n∑

i=1
λiU(vi) =

n∑
i=1

λiwi = T(v).

Thus U(v) = T(v), ∀v ∈ V, that is U = T.
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Example 7.2.1. Let T : R2 7→ R2 be a linear transformation defined by:

T(a1, a2) = (2a2 − a1, 3a1).

And let U : R2 7→ R2 be a linear transformation.
If we know that U(1, 2) = (3, 3) and U(1, 1) = (1, 3), then U = T. This follows

from the fact that {(1, 2), (1, 1)} is a basis for R2.
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Matrix Representation of
Linear Transformations

Suppose that we have a basis β = {v1, v2, . . . , vn} for a vector space V over F .
Then for every vector v ∈ V there are unique scalars c1, c2, . . . , cn ∈ F , such
that:

v = c1v1 + c2v2 + · · ·+ cnvn.

Here, we are trying to associate the list of scalars {c1, c2, . . . , cn} with the basis
vectors in β. Note that changing the order of the basis β will change the order
of the scalars.
Example 8.0.1. The set of two vectors:[

1
0

]
and

[
0
1

]
,

form a basis for R2, but for the two bases:

β =
{[

1
0

]
,

[
0
1

]}
and β′

{[
0
1

]
,

[
1
0

]}
,

we have: [
1
2

]
= 1 · β1 + 2 · β2

= 2 · β′
1 + 1 · β′

2

Thus the list of scalars associated with the vector is {1, 2} relative to β, and
{2, 1} relative to β′. To deal with this ambiguity, we introduce the concept of
an ordered basis for a vector space.

Definition 11. Ordered Basis. Suppose we have a vector space V such that
dim(V) < ∞. Then an ordered basis for V is a basis for V in a specific
order, or equivalently, a finite sequence of vectors in V which is linearly
independent and spans V.

29
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For the vector space Fn, we call:
e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , e2 =


0
0
0
...
1




the standard ordered basis for Fn. For the vector space Pn(F ), we call:{

1, x, x2, . . . , xn
}

the standard ordered basis for Pn(F ).

With the concept of ordered bases, we can identify abstract vectors in an
n-dimensional vector space with n-tuples.

Definition 12. Co-ordinate Vector. Let β = {u1, u2, . . . , un} be an ordered
basis for V, and let v ∈ V and c1, c2, . . . , cn be the unique scalars such that:

v = c1u1 + c2u2 + · · ·+ cnun.

We define the co-ordinate vector of v relative to β, denoted by [v]β to be:

[v]β =


c1
c2
...
cn

 .

Example 8.0.2. Suppose we have V = P2(R) and f(x) = 1− 2x+ 5x2. Then,
if we choose β =

{
1, x, x2} to be the standard ordered basis for V, then we have:

[f ]β =

 1
−2
5

 .

However, if we choose β′ =
{
1, x+ 1, (x+ 1)2

}
to be an alternate ordered basis

for V, then find [f ]β′ .
Solution. We must find a, b, c ∈ R such that:

a(1) + b(x+ 1) + c(x+ 1)2 = 1− 2x+ 5x2,

or equivalently,

(a+ b+ c) + (b+ 2c)x+ cx2 = 1− 2x+ 5x2.

This gives us the following system of linear equations:

a+ b+ c = 1
b+ 2c = −2

c = 5
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Whose solution is a = 8, b = −12, c = 5. Therefore:

[f ]β′ =

 8
−12
5

 .

Suppose that we have two finite dimensional vector spaces. V with an ordered
basis β = {v1, v2, . . . , vn}, and W with an ordered basis γ = {w1, w2, . . . , wm}.
Suppose then that we have a transformation T : V 7→ W that is linear. If this
is true, then ∀j ∈ {1, 2, . . . , n}, there exist unique scalars c1j , c2j , . . . , cmj ∈ F
such that:

T(v1) = c11w1 + c21w2 + · · ·+ cm1wm

T(v2) = c12w1 + c22w2 + · · ·+ cm2wm

...
T(vn) = c1nw1 + c2nw2 + · · ·+ cmnwm

We can write the equations in a matrix form:
T(v1)
T(v2)

...
T(vn)

 =


c11 c21 · · · cm1
c12 c22 · · · cm2
...

... . . . ...
c1n c2n · · · cmn



w1
w2
...

wm

 .

Definition 13. Matrix Representation. The matrix:

A = (cij)m×n =


c11 c21 · · · cm1
c12 c22 · · · cm2
...

... . . . ...
c1n c2n · · · cmn


is called the matrix representation of T with respect to the ordered
bases β and γ and we write A = [T]γβ . If V = W and β = γ, then we write
A = [T]β .

Note. The matrix A is in fact the transpose of the left matrix in the matrix
product above.
Example 8.0.3. Consider the linear transformation T : R2 7→ R3 defined by:

T(a1, a2) = (a1 + 3a2, 0, 2a1 − 4a2).

If we choose β and γ to be the standard ordered bases for R2 and R3 respectively,
then:

T(1, 0) = (1, 0, 2) = 1e1 + 0e2 + 2e3
T(0, 1) = (3, 0,−4) = 3e1 + 0e2 − 4e3

=⇒ [T]γβ =

1 3
0 0
2 −4

 .
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Moving on, let V & W be vector spaces over F . And let T,U : V 7→ W be
arbitrary transformations. Then, we define T+ U : V 7→ W by:

(T+ U)(v) = T(v) + U(v), ∀v ∈ V,

and λT : V 7→ W by:
(λT)(v) = λT(v), ∀v ∈ V.

With linear transformations, we can preserve linearity.

Theorem 17. Vector space of all linear transformations. Let V and
W be vector spaces over the field F . And let T,U : V 7→ W be linear
transformations. Then:

∀λ ∈ F, λT+ U is a linear transformation.

The set of all linear transformations V 7→ W is a vector space over F with
addition and scalar multiplication as defined above.

The vector space of all linear transformations V 7→ W over the same field F
is denoted by L(V,W). If V = W, then we write L(V) instead.

Theorem 18. Let V and W be finite-dimensional vector spaces, with
ordered bases β and γ. And let T,U : V 7→ W with T,U ∈ L(V,W). Then
the following statements are true:

[T+ U]γβ = [T]γβ + [U]γβ
[λT]γβ = λ[T]γβ , ∀λ ∈ F

Example 8.0.4. Let S,T ∈ L
(
R2) be defined by:

S
[
x
y

]
=
[
x+ 2y
−y

]
and T

[
x
y

]
=
[
−x+ y

3x

]
.

If β is the standard basis for R2, find [S+ T]β and [3S]β by using the definition
and by using the theorem above.
Solution. The matrix representations for S and T are:

[S]β =
[
1 2
0 −1

]
and [T]β =

[
−1 1
3 0

]
,

respectively. By definition, we have:

(S+ T)
[
x
y

]
= S

[
x
y

]
+ T

[
x
y

]
=
[
x+ 2y
−y

]
+
[
−x+ y

3x

]
=
[

3y
3x− y

]
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and therefore, its matrix representation is:

[(S+ T)]β =
[
0 3
3 −1

]
.

Similarly,

(3S)
[
x
y

]
= 3S

[
x
y

]
= 3

[
x+ 2y
−y

]
=
[
3x+ 6y
−3y

]
and hence:

[3S]β =
[
3 6
0 −3

]
.

By the theorem, we have:

[S+ T]β = [S]β + [T]β =
[
1 2
0 −1

]
+
[
−1 1
3 0

]
=
[
0 3
3 −1

]
.

and:
[3S]β = 3[S]β = 3

[
1 2
0 −1

]
=
[
3 6
0 −3

]
.
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Compositions of Linear
Transformations

Definition 14. Composition. Let A, B, and C be sets and f : A 7→ B and
g : B 7→ C be transformations. The composition of g and f , denoted by
g ◦ f , is a function g ◦ f : A 7→ C, defined as follows:

(g ◦ f)(x) = g(f(x)), ∀x ∈ A.

The first result states that the composition of linear transformations is linear.

Theorem 19. Let V, W, and Z be vector spaces over the field F . If we have
some T ∈ L(V,W) and some U ∈ L(W,Z), then the following statement
holds true:

U ◦ T ∈ L(V,Z).

Proof. If u, v ∈ V and λ ∈ F , then:

(U ◦ T)(λu+ v) = U(T(λu+ v))
= U(λT(u) + T(v))
= λU(T(u)) + U(T(v))
= λ(U ◦ T)(u) + (U ◦ T)(v)

Theorem 20. Let V, W, and Z be finite-dimensional vector spaces with
ordered bases α, β, and γ, respectively. We have the following implication:

T ∈ L(V,W),U ∈ L(W,Z) =⇒ [U ◦ T]γα = [U]γβ [T]
β
α.

Corollary 9.0.1. Given V with the ordered basis β and some T,U ∈ L(V), we
have:

[U ◦ T]β = [U]β [T]β .

34
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Example 9.0.1. Consider the transformations U ∈ L(P3(R), P2(R)) and T ∈
L(P2(R), P3(R)) defined by:

U(f(x)) = f ′(x), T(f(x)) =
∫ x

0
f(t) dt,

with α and β representing the standard ordered bases of P3(R) & P2(R) respec-
tively. Show that U ◦ T = I, the identity transformation on P2(R).
Solution. First, recall that α =

{
1, x, x2, x3} and β =

{
1, x, x2}. We have:

[U]βα =
[
[U (1)]β , [U (x)]β ,

[
U
(
x2)]

β
,
[
U
(
x3)]

β

]
=

0 1 0 0
0 0 2 0
0 0 0 3

 ,

and:

[T]αβ =
[
[T (1)]α , [T (x)]α ,

[
T
(
x2)]

α

]
=


0 0 0
1 0 0
0 1

2 0
0 0 1

3

 .

Therefore:

[U ◦ T]β =

0 1 0 0
0 0 2 0
0 0 0 3



0 0 0
1 0 0
0 1

2 0
0 0 1

3

 =

1 0 0
0 1 0
0 0 1

 = [I]β .

Next, we show how to evaluate the transformation at any vector point.

Theorem 21. Let V, W be finite dimensional vector spaces with the ordered
bases β, and γ respectively. Also let T ∈ L(V,W), then:

[T(u)]γ = [T]γβ [u]β , ∀u ∈ V.

Proof. Let u ∈ V, and let us define the following linear transformations:

R(λ) = λu

S(λ) = λT(u)
R : F 7→ V ∀λ ∈ F

S : F 7→ W ∀λ ∈ F

Then S = T ◦ R, since ∀λ ∈ F we have R(λ) = λu, and so:

T(R(λ)) = T(λu) = λT(u) = S(λ).

Let α = {1} be the standard ordered basis for F . Applying theorem 20 to R, S,
and T, we have:

[T ◦ R]γα = [T]γβ [R]
β
α.
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However:

[T(u)]γ = [1T(u)]
= [S(1)]γ (since we have: S(λ) = λT(u))
= [S]γα (since α = {1} is a basis for F )
= [T ◦ R]γα (since S = T ◦ R)
= [T]γβ [R]

β
α (by theorem 20)

= [T]γβ [R(1)]β (since α = {1} is a basis for F )
= [T]γβ [u]β (since R(λ) = λu).

Definition 15. Left Multiplication Transformation. Let A be an m× n
matrix with entries from a field F . We denote LA to be the mapping
LA : Fn 7→ Fm defined by:

LA(x) = Ax, for each column vector x ∈ Fn.

We call LA a left-multiplication transformation.

Example 9.0.2. Let
A =

[
1 3 5
6 4 2

]
.

Then A ∈ M2×3(R) and LA : R3 7→ R2. If

x =

 1
0
−1

 ∈ R3,

then

LA(x) = Ax =
[
1 3 5
6 4 2

] 1
0
−1

 =
[
−4
4

]
∈ R2.

Theorem 22. Let A ∈ Mm×n(F ). Then LA ∈ L(Fn, Fm). Furthermore,
if B ∈ Mm×n(F ), and β and γ are the standard ordered bases for Fn and
Fm respectively, then the following are equivalent:

(a) [LA]γβ = A

(b) LA = LB ⇐⇒ A = B

(c) LA+B = LA + LB and LλA = λLA, ∀λ ∈ F

(d) ∀T ∈ L(Fn, Fm), ∃!Cm×n ∋ T = LC , where C = [T ]γβ
(e) E ∈ Mn×p(F ) =⇒ LAE = LALE

(f) m = n =⇒ LIn = IFn
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Proof. The fact that LA is linear follows from the properties of matrix operations.
Let β = {e1, e2, . . . , en}.

(a) We already noted that the j-th column of the m× n matrix [LA]γβ is just
[LA(ej)]γ , the coordinate vector of LA(ej) in terms of γ. However, by
definition, LA(ej) = Aej (a product of the two matrices), which is precisely
the j-th column of the matrix A. So [LA]γβ = A.

(b) Suppose that LA = LB. Then by (a), we can write A = [LA]γβ and
B = [LB ]γβ . Hence A = B and the converse implication is trivial.

(c) By definition, for any v ∈ Fn

LA+B(v) = (A+B)v = Av +Bv = LA(v) + LB(v) = (LA + LB)(v).

(d) Suppose that T ∈ L(Fn, Fm). Take C = [T ]γβ . Then we have

[T(v)]γ = [T]γβ [v]β , ∀v ∈ Fn,

which, in our situation, is

[T(v)]γ = C[v]β , ∀v ∈ Fn.

Note that since β and γ are the standard bases for Fn and Fm respectively,
we have

[v]β = v, ∀v ∈ Fn [w]γ = w, ∀w ∈ Fm.

Then the relation
[T(v)]γ = C[v]β , ∀v ∈ Fn

turns into
T(v) = Cv.

And, by definition, Cv = LC(v), ∀v ∈ Fn. Thus T = LC , and the existence
of C is proven. The uniqueness of C follows from (b).

(e) Let
{
e′1, e

′
2, . . . , e

′
p

}
be the standard basis for F p. Since matrix multiplica-

tion is associative, we have (AE)e′j = A(Ee′j) ∀j ∈ {1, 2, . . . , p}. Thus

LAE(e′j) = (AE)e′j = A(Ee′j) = LA(Ee′j) = LA(LE(e′j))
= (LA ◦ LE)(e′j)

which means that LAE = LA ◦ LE .

(f) Suppose that m = n. Recall that In is the n× n identity matrix, and
IFn is the identity linear transformation from Fn into Fn. Then,
∀v ∈ Fn we have

LIn(v) = Inv = v = IFn(v),

which shows that LIn = IFn .
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Invertibility &
Isomorphisms

Definition 16. Let V and W be vector spaces, and let T ∈ L(V,W). Then
a function U : W 7→ V is said to be an inverse of T if:

T ◦ U = IW and U ◦ T = IV.

If T has an inverse, then T is said to be invertible.

We know from MH1300 that if T is invertible, then its inverse is unique and
is denoted by T−1. We also know that it implies that T is one-to-one and onto.

Theorem 23. Let V and W be finite-dimensional vector spaces where
dim(V) = dim(W), and let T ∈ L(V,W). Then:

T invertible ⇐⇒ dim(R(T)) = dim(V).

Since invertibility implies one-to-one and onto.

The following result shows that the inverse of a linear transformation preserves
linearity.

Theorem 24. Given an invertible T ∈ L(V,W) we conclude that T−1 :
W 7→ V is also linear, that is, T−1 ∈ L(W,V).

Proof. Let w1, w2 ∈ W and λ ∈ F . Since T is onto and one-to-one, there exists
unique vectors v1, v2 ∈ V such that:

T(v1) = w1 and T(v2) = w2.

Thus:
v1 = T−1(w1) and v2 = T−1(w2),

38
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and we have:

T−1(λw1 + w2) = T−1 (λT(v1) + T(v2))
= T−1 (T(λv1 + v2))
= λv1 + v2

= λT−1(w1) + T−1(w2)

Lemma 10.0.1. Let T ∈ L(V,W) be an invertible transformation. Then:

dim(V) < ∞ ⇐⇒ dim(W) < ∞.

In this case, dim(V) = dim(W).

Proof. Suppose that V is finite-dimensional. Let β = {v1, v2, . . . , vn} be a basis
for V. Then T(β) spans R(T) = W, hence some subset of T(β) is a basis for
W, that is, W is finite-dimensional. The reverse implication can be proven by a
similar argument using T−1.

Now, suppose that both V and W are finite-dimensional. Because T is
one-to-one and onto, we have:

nullity(T) = dim(N(T)) = dim({0}) = 0,

rank(T) = dim(R(T)) = dim(W).

So by the dimension theorem,

nullity(T) + rank(T) = dim(V) ⇐⇒ 0 + dim(W) = dim(V),

that is,
dim(V) = dim(W).

Theorem 25. Let T ∈ L(V,W), where V and W are finite-dimensional
vector spaces with ordered bases β and γ respectively. Then:

T invertible ⇐⇒ [T]γβ invertible.

Furthermore: [
T−1]β

γ
=
(
[T]γβ

)−1
.

Proof. Suppose that T is invertible. This implies that dim(V) = dim(W). Let
n = dim(V). Then [T]γβ is an n × n matrix. Next, for T−1 : W 7→ V, we have
T ◦ T−1 = IW and T−1 ◦ T = IV. Thus:

In =

 [IV]β =
[
T−1 ◦ T

]
β
=
[
T−1]β

γ
[T]γβ

[IW]γ =
[
T ◦ T−1]

γ
= [T]γβ

[
T−1]β

γ

=⇒ [T]γβ invertible,
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and (
[T]γβ

)−1
=
[
T−1]β

γ
.

Now suppose that A = [T]γβ is invertible. Then ∃B ∈ Mn×n such that AB =
BA = In. We apply theorem 16 to a starting vector space W with an ordered
basis γ = {γ1, γ2, . . . , γn} and a destination vector space V with the set of
vectors:

v1 = b11β1 + b21β2 + · · ·+ bn1βn

v2 = b12β1 + b22β2 + · · ·+ bn2βn

...
vn = b1nβ1 + b2nβ2 + · · ·+ bnnβn

where β = {β1, β2, . . . , βn}, an ordered basis for V. Then ∃U ∈ L(W,V), such
that:

U(γk) = vk = b1kβ1 + b2kβ2 + · · ·+ bnkβn, k = 1, 2, . . . , n.

If follows that [U]βγ = B = (bik). To show U = T−1, note that:

[U ◦ T]β = [U]βγ [T]
γ
β = BA = In = [IV]β .

So U ◦ T = IV, and similarly, T ◦ U = IW. Thus T is invertible.

Definition 17. Isomorphic. Let V and W be vector spaces. We say that V
is isomorphic to W if ∃T ∈ L(V,W) that is invertible, and denote:

V ≃ W.

Such a linear transformation is called an isomorphism from V onto W.

Example 10.0.1. The vector space M2×2(R) is isomorphic to R4, because the
transformation

T
[
a b
c d

]
= (a, b, c, d),

is linear, one-to-one, and onto.

Theorem 26. Let V and W be finite-dimensional vector spaces over the
same field. Then:

V ≃ W ⇐⇒ dim(V) = dim(W).

Proof. Suppose that V ≃ W and that T : V 7→ W is an isomorphism from V
onto W. Then we have dim(V) = dim(W). Now suppose that dim(V) = dim(W),
and let β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wn} be bases for V and W
respectively. By theorem 16 we can say that ∃T ∈ L(V,W) such that T(vi) = wi

for i = 1, 2, . . . , n. Then we have:

R(T) = span(T(β)) = span(γ) = W.

So T is onto. Then T is also one-to-one, and hence T is an isomorphism.
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The following theorem shows how the collection L(V,W) of all linear transfor-
mations my be identified with the appropriate vector space of m× n matrices.

Theorem 27. Let V and W be vector spaces where:

dim(V) = n and dim(W) = m,

and where β and γ are the ordered bases for V and W respectively. Then
the transformation Φ : L(V,W) 7→ Mm×n(F ) defined by:

Φ(T) = [T]γβ , ∀T ∈ L(V,W),

is an isomorphism.

Proof. By theorem 18, Φ is linear. All that’s left to show is that Φ is one-
to-one and onto. This can be achieved by demonstrating that ∀A ∈ Mm×n,
∃!T ∈ L(V,W) such that Φ(T) = A.

Let β = {β1, β2, . . . , βn}, γ = {γ1, γ2, . . . , γm}, and let A = (aij) be a given
m × n matrix. Applying theorem 16 to the starting vector space V with the
ordered basis β and a destination vector space W with the set of vectors:

w1 = a11γ1 + a21γ2 + · · ·+ am1γm

w2 = a12γ1 + a22γ2 + · · ·+ am2γm

...
wn = a1nγ1 + a2nγ2 + · · ·+ amnγm

where γ = {γ1, γ2, . . . , γn} form an ordered basis for W. Then there exists a
unique linear transformation T : V 7→ W such that:

T(βj) = wj = a1jγ1 + a2jγ2 + · · ·+ amjγm, j = 1, 2, . . . , n.

Which implies that [T]γβ = A, that is, Φ(T) = A. Therefore Φ is an isomorphism.

Definition 18. Standard Representation. Let β be an ordered basis for an n-
dimensional vector space V over the field F . The standard representation
of V with respect to β is the function φβ : V 7→ Fn defined by:

φβ(v) = [v]β , ∀v ∈ V.

Example 10.0.2. Let β = {(1, 0), (0, 1)} and γ = {(1, 2), (3, 4)} be ordered
bases for R2. For v = (1,−2), we have

φβ(v) = [v]β =
[
1
−2

]
and φγ(v) = [v]γ =

[
−5
2

]
.

Theorem 28. For any finite-dimensional vector space V with ordered basis
β, φβ is an isomorphism.



LECTURE NO. 10. INVERTIBILITY & ISOMORPHISMS 42

Now let V and W be vector spaces of dimension n and m respectively, and let
T ∈ L(V,W). Next, define A = [T]γβ , where β and γ are arbitrary ordered bases
of V and W respectively. Then the following commutative diagram maps the
relationships between V,W, Fn, and Fm:

V W

Fn Fm

T

φβ φγ

LA

It also shows that there are two composites of linear transformations that map
V into Fm, and thus we can conclude that

LAφβ = φγT,

that is, that the diagram “commutes”. This diagram allows us to transfer
operations on abstract vector spaces to ones on Fn and Fm.
Example 10.0.3. Let us define T ∈ L(P3(R), P2(R)) by:

T(f(x)) = f ′(x).

Let β and γ be the standard ordered bases for P3(R) and P2(R) respectively,
and let φβ : P3(R) 7→ R4 and φγ : P2(R) 7→ R3 be the corresponding standard
representations of P3(R) and P2(R). If A = [T]γβ then

A =

0 1 0 0
0 0 2 0
0 0 0 3

 .

Now consider p(x) = 2 + x− 3x2 + 5x3, we can see that:

LAφβ(p(x)) =

0 1 0 0
0 0 2 0
0 0 0 3




2
1
−3
5

 =

 1
−6
15

 .

But since T(p(x)) = p′(x) = 1− 6x+ 15x2, we have:

φγT(p(x)) =

 1
−6
15

 .



Lecture No. 11

The Change of Coordinate
Matrix

In this lecture, we study how a coordinate vector relative to one basis can be
changed into a coordinate vector relative to the other.
Example 11.0.1. Consider the equation

2x2 − 4xy + 5y2 = 1.

It is hard to see what curve this equation represents. If we make the following
changes of variables:

x = 2
√
5
x′ − 1

√
5
y′

y = 1
√
5
x′ + 2

√
5
y′

then we obtain the equation:

(x′)2 + 6(y′)2 = 1,

which is the equation of an ellipse. In this case, the coordinates of a point relative
to the unit vectors of the standard ordered basis

β =
{
e1 =

[
1
0

]
, e2 =

[
0
1

]}
is changed to new coordinates of the same point, but relative to the unit vectors
of the new ordered basis:

β′ =
{

1
√
5

[
2
1

]
,
1
√
5

[
−1
2

]}
.

Notice that the equations of the change of variables shown above can be repre-
sented in the form of a matrix equation:[

x
y

]
= 1

√
5

[
2 −1
1 2

] [
x′

y′

]
.
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Notice also that the matrix:

Q = 1
√
5

[
2 −1
1 2

]
is equal to [I]ββ′ , where I is the identity transformation of R2. This phenomenon
is true in general.

Theorem 29. Let V be a finite dimensional vector space with the ordered
bases β and β′. Also let Q = [IV]ββ′ . Then Q is invertible, and for any
v ∈ V:

[v]β = Q[v]β′ = [IV]ββ′ [v]β′ .

There is a mathematical name assigned to the matrix Q.

Definition 19. Change of Coordinate Matrix. For a given finite vector
space V, that has ordered bases β and β′, the matrix

Q = [IV]ββ′ ,

is called a change of coordinate matrix, which changes β′-coordinates
into β-coordinates.

Example 11.0.2. Let the vector space in question be R2, with β = {(1, 1), (1,−1)}
and β′ = {(2, 4), (3, 1)}. Find the matrix that changes β′-coordinates into β-
coordinates.
Solution. By definition, Q = [IV]ββ′ , so we have to represent IV at β′ in terms
of β:

IV

[
2
4

]
=
[
2
4

]
= 3

[
1
1

]
− 1

[
1
−1

]
and

IV

[
3
1

]
=
[
3
1

]
= 2

[
1
1

]
+ 1

[
1
−1

]
.

Hence
Q =

[
3 2
−1 1

]
.

Theorem 30. Let T be a linear operator on a finite-dimensional vector
space V. Also let β and β′ be ordered bases for V, where Q is the change of
coordinate matrix that changes β′ into β. Then:

[T]β′ = Q−1[T]βQ.

Proof. Let I := IV be the identity transformation on V. Then T = I ◦ T = T ◦ I.
Hence,

Q[T]β′ = [I]ββ′ [T]β
′

β′ = [I ◦ T]ββ′ = [T ◦ I]ββ′ = [T]ββ [I]
β
β′ = [T]βQ.

Therefore, [T]β′ = Q−1[T]βQ.
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Example 11.0.3. Let T be the following linear operator on R2:

T
[
a
b

]
=
[
3a− b
a− 3b

]
.

Also, let β = {(1, 1), (1,−1)} and β′ = {(2, 4), (3, 1)} as in example 11.0.2. Find
[T]β , as well as the matrix Q that changes β′-coordinates into β-coordinates,
and [T]β′ , using the theorem above.
Solution. We have:

[T]β =
[(

T
[
1
1

])
β

,

(
T
[
1
−1

])
β

]
=
[
3 1
−1 3

]
.

By example 11.0.2, we know what Q is, so we find its inverse:

Q =
[
3 2
−1 1

]
=⇒ Q−1 = 1

5

[
1 −2
1 3

]
.

Hence,

[T]β′ = Q−1[T]βQ

= 1
5

[
1 −2
1 3

] [
3 1
−1 3

] [
3 2
−1 1

]
=
[
4 1
−2 2

]
We have the following result that follows from the theorem.
Corollary 11.0.1. Let A ∈ Mn×n(F ) and let γ be an ordered basis for Fn.
Then

[LA]γ = Q−1AQ,

where Q is the n× n matrix whose j-th column is the j-th vector of γ.

Proof. This is a special case of the theorem, where T = LA, the left-multiplication
operator on Fn. Indeed, in the conclusion of the theorem

[T]β′ = Q−1[T]βQ,

we take, for our case, γ instead of β′, where β is the standard ordered basis for
Fn, and we use LA instead of T. Then we get

[LA]γ = Q−1[LA]βQ.

Since β is the standard ordered basis for Fn, we have [LA]β = A and Q = [I]βγ ,
which is precisely the n×n matrix whose j-th column is the j-th vector of γ.

Example 11.0.4. Let

A =

2 1 0
1 1 3
0 −1 0

 ,

and

γ =


−1

0
0

 ,

21
0

 ,

11
1

 , an ordered basis for R3.

Using the corollary, find [LA]γ .
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Solution. Let Q be then 3× 3 matrix whose j-th column is the j-th vector of
γ. Then

Q =

−1 2 1
0 1 1
0 0 1

 Q−1 =

−1 2 1
0 1 1
0 0 1

 .

Therefore,

[LA]γ = Q−1AQ

=

−1 2 1
0 1 1
0 0 1

2 1 0
1 1 3
0 −1 0

−1 2 1
0 1 1
0 0 1


=

 0 2 8
−1 4 6
0 −1 −1

 .

We define the relationship between the matrices [T]β and [T]β′ .

Definition 20. Similarity. Let A,B ∈ Mn×n(F ). We say that B is similar
to A if there exists an invertible matrix Q such that

B = Q−1AQ,

denoted as B ∼ A.



Lecture No. 12

Eigenvectors & Eigenvalues

The study of eigenvectors and eigenvalues is used to help solve the diagonalization
problem.

Example 12.0.1. Find an expression of the reflection T about the line y = 2x.
Solution. We can use theorem 16. Note that the point (1, 2) lies ont he straight
line y = 2x and the point (−2, 1) lies on the line perpendicular to the first one.
Then it is clear that

T
[
1
2

]
=
[
1
2

]
, T

[
−2
1

]
= −

[
−2
1

]
=
[
2
−1

]
.

Therefore, if we take
β′ =

{[
1
2

]
,

[
−2
1

]}
as an ordered basis for R2, then we have

T
[
1
2

]
=
[
1
2

]
= 1

[
1
2

]
+ 0

[
−2
1

]
and

T
[
−2
1

]
=
[
2
−1

]
= 0

[
1
2

]
− 1

[
−2
1

]
.

That is,
[T]β′ =

[
1 0
0 −1

]
.

Note. This matrix is diagonal.
Furthermore, if β is the standard basis for R2, then we can determine the

matrix that changes β′-coordinates into β-coordinates, Q, and its inverse Q−1:

Q = [I]ββ′ =
[
1 −2
2 1

]
, Q−1 = 1

5

[
1 2
−2 1

]
.

Then since Q−1[T]βQ = [T]β′ , we can solve the equation to get

[T]β = Q[T]β′Q−1 = 1
5

[
−3 4
4 3

]
.

47


	Vector Spaces
	Vector Space Axioms
	Valid Vector Spaces
	Invalid Vector Spaces
	Elementary Consequences

	Subspaces
	Basic definition
	Examples
	Forming New Subspaces

	Linear Combinations & Independence
	Linear Combinations & Span
	Linear Dependence & Independence

	Bases & Dimension
	Bases
	Dimension

	Notation, Null Space, & Range
	Basic Notation
	Null Space & Range

	Rank & Nullity
	Rank-Nullity Theorem

	Properties of Linear Transformations
	One-to-one and onto
	Uniqueness of linear transformations

	Matrix Representations
	Linear Transformation Composition
	Invertibility & Isomorphisms
	The Change of Coordinate Matrix
	Eigenvectors & Eigenvalues

