MH1300 FOUNDATIONS OF MATHEMATICS

2020/21 Semester 1

Tutorial 1

Ex. 1.1.7b, **7d.** Rewrite the following sentences less formally, without using variables. Determine, as best as you can, whether the statements are true or false.

- b. There is a real number x such that $x^2 < x$.
- d. For all real numbers a and b, $|a + b| \le |a| + |b|$.

Ex. 1.1.9. Fill in the blanks and rewrite the given statement.

For all equations E, if E is quadratic then E has at most two real solutions.

- a. All quadratic equations ______.
- b. Every quadratic equation ______.
- c. If an equation is quadratic, then it _____
- d. If E _____, then E _____.
- e. For all quadratic equation E, _____.

Ex. 1.2.4.

- a. Is $2 \in \{2\}$?
- b. How many elements are in the set $\{2, 2, 2, 2\}$?
- c. How many elements are in the set $\{0, \{0\}\}$?
- d. Is $\{0\} \in \{\{0\}, \{1\}\}$?
- e. Is $0 \in \{\{0\}, \{1\}\}$?

Ex. 1.2.7. Use the set-roster notation to indicate the elements in each of the following sets.

- a. $S = \{n \in \mathbb{Z} | n = (-1)^k, \text{ for some integer } k\}.$
- b. $T = \{m \in \mathbb{Z} | m = 1 + (-1)^i, \text{ for some integer } i\}.$
- c. $U = \{ r \in \mathbb{Z} | 2 \le r \le -2 \}.$
- d. $V = \{ s \in \mathbb{Z} | s > 2 \text{ or } s < 3 \}.$
- e. $W = \{t \in \mathbb{Z} | 1 < t < -3\}.$
- f. $X = \{ u \in \mathbb{Z} | u \le 4 \text{ or } u \ge 1 \}.$

Ex. 1.2.9.	
a. Is $3 \in \{1, 2, 3\}$?	f. Is $\{2\} \subseteq \{1, \{2\}, \{3\}\}$?
b. Is $1 \subseteq \{1\}$?	g. Is $\{1\} \subseteq \{1,2\}$?
c. Is $\{2\} \in \{1, 2\}$?	h. Is $1 \in \{\{1\}, 2\}$?
d. Is $\{3\} \in \{1, \{2\}, \{3\}\}$?	i. Is $\{1\} \subseteq \{1, \{2\}\}$?
e. Is $1 \in \{1\}$?	j. Is $\{1\} \subseteq \{1\}$?

Ex. 1.2.10b, 10d. (Ordered pairs)

b. Is
$$(5, -5) = (-5, 5)$$
?
d. Is $\left(\frac{-2}{-4}, (-2)^3\right) = \left(\frac{3}{6}, -8\right)$?

Question E1. Are the following pairs of sets equal? Explain your answer.

a. $\{0, 1, 3, 5\}$ and $\{n \in \mathbb{Z} \mid n^2 - 1 \le n\}$ b. $\{1, 1, 3\}$ and $\{3, 3, 1\}$ c. $\{x \in \mathbb{R} \mid 0 < x \le 2\}$ and $\{1, 2\}$

Question E2. List out the elements of B in set-roster notation. Is $A \subseteq B$? $A = \{1, 2, 3, 4\}, \qquad C = \{5, 6, 7, 8\}, \qquad B = \{n \in A \mid n + m = 8 \text{ for some } m \in C\}$

Question E3. Are the following true or false? Explain your answer.

a. $\{x\} \subseteq \{x\}$ b. $\{x\} \in \{x, \{x\}\}$ c. $\{x\} \in \{x\}$ d. $\{\{x\}\} \subsetneq \{x, \{x\}\}$

Question E4. Are the following true or false? Explain your answer.

a. $\{x, y\} \subseteq \{x, \{y\}\}$ b. $\{x\} \in \{x, \{x, y\}\}$ c. $\{\} \in \{x\}$ d. $\{y, \{x\}, \{y\}\} \subsetneq \{y, \{x\}, y, \{y, y\}\}$

 $\mathbf{2}$