MH1300 FOUNDATIONS OF MATHEMATICS

2020/21 Semester 1

Tutorial 7

Ex. 4.5.21. Prove the statement if it is true and find a counterexample if it is false. For all odd integers $n,\lceil n / 2\rceil=(n+1) / 2$.

Ex. 4.5.27. Prove the following statement.
For all real numbers x, if $x-\lfloor x\rfloor \geq 1 / 2$ then $\lfloor 2 x\rfloor=2\lfloor x\rfloor+1$.

Ex. 4.6.14. Prove the statement by contradiction.
For all prime numbers a, b, and $c, a^{2}+b^{2} \neq c^{2}$.
Ex. 4.6.24. Prove the statement in two ways: (a) by contraposition and (b) by contradiction. The reciprocal of any irrational number is irrational.
Note that the reciprocal of a nonzero real number x is $1 / x$.

Ex. 4.7.18. The quotient-remainder theorem says not only that there exist quotients and remainders but also that the quotient and remainder of a division are unique. Prove the uniqueness. That is, prove that if a and d are integers with $d>0$ and if q_{1}, r_{1}, q_{2}, and r_{2} are integers such that

$$
a=d q_{1}+r_{1} \quad \text { where } 0 \leq r_{1}<d
$$

and

$$
a=d q_{2}+r_{2} \quad \text { where } 0 \leq r_{2}<d,
$$

then

$$
q_{1}=q_{2} \quad \text { and } \quad r_{1}=r_{2} .
$$

Ex. 4.7.23. Prove that $\sqrt{2}+\sqrt{3}$ is irrational.

Ex. 4.7.24. Prove that $\log _{5}(2)$ is irrational. (Hint: Use the unique factorization of integers theorem.)

Ex. 4.7.28. An alternative proof of the infinitude of the prime numbers begin as follows: Proof: Suppose there are only finitely many prime numbers. Then one is the largest. Call it p. Let $M=p!+1$. We will show that there is a prime number q such that $q>p$.
Complete this proof. $(p!=p(p-1) \cdots 3 \cdot 2 \cdot 1$.)

