MH1300 FOUNDATIONS OF MATHEMATICS

2020/21 Semester 1

Tutorial 8

Ex. 5.1.56. Transform the sum by making the change of variable $j=i-1$.

$$
\sum_{i=3}^{n} \frac{i}{i+n-1}
$$

Ex. 5.1.77.

a. Prove that $n!+2$ is divisible by 2 , for all integers $n \geq 2$.
b. Prove that $n!+k$ is divisible by k, for all integers $n \geq 2$ and $k=2,3, \ldots, n$.
c. Given any integer $m \geq 2$, is it possible to find a sequence of $m-1$ consecutive positive integers none of which is prime? Explain your answer.

Ex. 5.2.14. Prove the following statement by mathematical induction.

$$
\sum_{i=1}^{n+1} i \cdot 2^{i}=n \cdot 2^{n+2}+2, \quad \text { for all integers } n \geq 0
$$

Ex. 5.3.11. Prove the following statement by mathematical induction.

$$
3^{2 n}-1 \text { is divisible by } 8, \text { for each integer } n \geq 0
$$

Ex. 5.3.12. Prove the following statement by mathematical induction.

$$
7^{n}-2^{n} \text { is divisible by } 5, \text { for each integer } n \geq 0
$$

Ex. 5.3.20. Prove the following statement by mathematical induction.

$$
2^{n}<(n+2)!, \text { for all integers } n \geq 0
$$

Ex. 5.3.22. Prove the following statement by mathematical induction.
$1+n x \leq(1+x)^{n}$, for all real numbers $x>-1$ and integers $n \geq 2$.

