Voter Dynamics

A simple voter-politician attraction model

Philip Thomas K. Wang Zi Yuan

Nanyang Technological University
April 17, 2024

Our Inspiration

Singapore's next General Election likely to be held in late 2024 at the earliest, analysts say

This comes attor Prime Minitor Lee Hsien Loong reveoled he will hand the reins to Depuly
Prime Mivister Lawrerce Wora before the next Generol Election, and by Noventber 2024 if Prime Minister Lawrence Worg before the next Generol Election, and by November 2024 if

Our Inspiration

2024: The Super Election Year

Countries where a national election is/was held in 2024
Expected number of voters: 2B(-25% of world pop.) Share of free elections*: 38\%

statista 5

Intuition behind our model

- Increasing political polarisation across democracies
- Confirmation bias
- Social Endorsement
- Budget:
- Money inveseted in campaigningsocial media, etc.
- Political prowess

Polarization Surges Among the Politically Engaged

Distribution of Democrats and Republicans on a 10 -item scale of political values, by level of political engagement

How can we model voters \& politicians?

- We create numerically defined "issues/interests":

How can we model voters \& politicians?

- We create numerically defined "issues/interests":

How can we model voters \& politicians?

- We create numerically defined "issues/interests":

- Allows us to assess whether voters are "aligned" with politicians

How can we model voters \& politicians?

- We create numerically defined "issues/interests":

- Allows us to assess whether voters are "aligned" with politicians
- Could foreseeably be used to encode real life data

Our Mathematical Model

$$
\Delta v_{i}=\left(p_{i}-v_{i}\right) \rho_{v, p} B_{p},
$$

where:

Our Mathematical Model

$$
\Delta v_{i}=\left(p_{i}-v_{i}\right) \rho_{v, p} B_{p},
$$

where:

- B_{p} is the budget of politician p,

Our Mathematical Model

$$
\Delta v_{i}=\left(p_{i}-v_{i}\right) \rho_{v, p} B_{p},
$$

where:

- B_{p} is the budget of politician p,
- $\rho_{v, p}$ is the correlation coefficient on all the issues between voter v and politician p,

Our Mathematical Model

$$
\Delta v_{i}=\left(p_{i}-v_{i}\right) \rho_{v, p} B_{p},
$$

where:

- B_{p} is the budget of politician p,
- $\rho_{v, p}$ is the correlation coefficient on all the issues between voter v and politician p,
- and $\left(p_{i}-v_{i}\right)$ is the difference between voter v and politician p on one specific issue.

Model Limitations

1. We don't know what the underlying distribution of these "issues" are.

Model Limitations

1. We don't know what the underlying distribution of these "issues" are.
2. We assume that each "issue" follows the same distribution.

Model Limitations

1. We don't know what the underlying distribution of these "issues" are.
2. We assume that each "issue" follows the same distribution.
3. We assume that politicians don't change during their campaign.

Model Limitations

1. We don't know what the underlying distribution of these "issues" are.
2. We assume that each "issue" follows the same distribution.
3. We assume that politicians don't change during their campaign.
4. We assume that the only thing that varies among individuals is where they stand on these "issues".

Model Limitations

1. We don't know what the underlying distribution of these "issues" are.
2. We assume that each "issue" follows the same distribution.
3. We assume that politicians don't change during their campaign.
4. We assume that the only thing that varies among individuals is where they stand on these "issues".
5. We don't account for voter-voter interaction.

Model Implementation

For each voter, for each politician, determine how voters shift their stance:

```
VI_data = rnorm(ni*nv)
PI_data = rnorm(ni*np)
b_data = runif(np, min = 0, max = 1)
VI = matrix(data = VI_data, nrow = nv, ncol = ni)
PI = matrix(data = PI_data, nrow = np, ncol = ni, byrow = T)
b}=m\mathrm{ matrix(data = b_data, ncol = np, nrow = nv, byrow = T)
for (day in 1:days) {
    rho <- cor(t(rbind(PI,VI)))[(np+1):(np+nv),1:np]
    ME <- rho * b
    del_VI<- matrix(data = 0, nrow = nv, ncol = ni)
    for(v in 1:nv){
        for(p in 1:np){
            if (ME[v,p]>0) {
                del_VI[v,] = del_VI[v,] + (PI[p,] - VI[v,])*ME[v,p]
            }
        }
    }
    VI<- VI + del_VI
}
```


Initial Findings

Process leads to varying outcomes w/ same parameters

Voting Pattern under seed: 234

Voting Pattern under seed: 545

Voting Pattern under seed: 236

Cand: Fund
\rightarrow 1:0.32
\rightarrow 2:0.86
\rightarrow 3:0.52

- $4: 0.61$

Cand: Fund
\rightarrow 1:0.46
\rightarrow 2:0.9
\rightarrow 3:0.74
-4:0.51

Initial Findings

Voters tend to converge towards a politician-stable points!

Initial Findings

Higher budget \neq winning

Voting Pattern under seed: 545

Interesting Findings

Higher budget \approx winning for low number of politicians

Voting Pattern under seed: 385

Voting Pattern under seed: 468

Voting Pattern under seed: 594

Cand: Fund
\rightarrow 1:0.33

- 2:0.52

Voting Pattern under seed: 547

Interesting Findings

Higher budget \approx winning for high number of politicians for large no. of issues

Voting Pattern under seed: 433

Voting Pattern under seed: 617

Voting Pattern under seed: 981

Voting Pattern under seed: 894

The End.

